Ugrás a tartalomhoz

Adatstruktúrák és algoritmusok

Házy Attila, Nagy Ferenc (2009)

4. fejezet - Keresés, rendezés egyszerű struktúrában (tömb)

4. fejezet - Keresés, rendezés egyszerű struktúrában (tömb)

4.1. Keresés

4.1.1. Lineáris keresés

A tömb adatstruktúrában a keresés műveletét részint megtárgyaltuk a 3.1. fejezetben. Két esetet különböztettünk meg, a rendezetlen és a rendezett tömb esetét. Rendezetlen tömbben egy adott k kulcsú elem megkereséséhez nem áll rendelkezésre semmilyen információ azon kívül, hogy az elemek lineárisan követik egymást. Hiába érhetők el az elemek tetszőleges sorrendben, minden elemet meg kell vizsgálni, hogy a kulcs megegyezik-e a keresett k kulccsal, ugyanis azt sem tételeztük föl, hogy például a kulcsok számok. A kulcsok természete lehet olyan is, hogy mondjuk a rendezésükről szó nem lehet. (Nevezzünk meg ilyen kulcsokat!) Ez pedig azt jelenti, hogy a lineáris keresésnél jobb növekedési rendű időbonyolultsággal rendelkező algoritmus nem adható. A keresés rendezetlen tömbben lineáris idejű, azaz a keresési algoritmus időbonyolultsága . Ez egy aszimptotikus összefüggést jelent (pontosítva: ), melyben egy pozitív konstans. Nem mindegy azonban ennek a konstansnak a konkrét értéke. Azt megtehetjük, hogy a lineáris keresési algoritmust némiképpen módosítva ezt a konstanst lejjebb szorítjuk. Tekintsük például a 3.1.1. keresés_tömbben algoritmust. Legyen az algoritmus számmal számozott sorának a végrehajtási ideje . Tételezzük fel a számolási idő szempontjából a legrosszabb esetet, hogy a keresett elem nincs a tömbben. Ekkor a keresés ideje:

Nem túl sokat torzítunk a valóságon, ha feltételezzük, hogy az értékadás és egy relációvizsgálat valamint logikai művelet (ÉS) körülbelül azonosan ideig tart. Akkor , és így

A -nek megfelelő aszimptotikus kifejezésben szereplő konstans értéke -nek vehető. Módosítsuk most úgy a 3.1.1. algoritmust, hogy a keresés kezdetén a keresett k kulcsot a tömb végéhez hozzáfüggesztjük. Feltesszük, hogy erre van elegendő hely. Ebben az esetben az elem biztosan benne lesz a tömbben. A keresésből a tömbelem indexének végvizsgálata kihagyható. A keresés mindig sikeres lesz, csak ha a visszakapott index nagyobb, mint az eredeti tömb utolsó elemének indexe, akkor valójában az elem nincs a tömbben. Íme a megváltoztatott algoritmus pszeudokódja:

Most a legrosszabb eset ideje

Itt azt feltételezhetjük, hogy , amiből

Itt az aszimptotikus kifejezés konstansa , tehát ezzel a kis trükkel ha a futási idő jellegét (linearitását) nem is, de a konkrét idejét közel felére sikerült csökkenteni a 3.1.1. algoritmus idejéhez képest.

4.1.2. Logaritmikus keresés

Rendezett tömb esetén láttuk a 3.1. fejezetben, hogy a lineáris időnél jobbat is el tudunk érni a bináris kereséssel (3.1.4. algoritmus), amely logaritmikus időt ad. A bináris keresés mellett vele konkuráló érdekes algoritmus a Fibonacci keresés algoritmusa. Feltételezzük, hogy a kulcsokat (és az adatrekordokat) tartalmazó tömb neve , mérete , és a tömbelemek indexelése egytől indul. A rekordok a kulcsok növekvő sorrendje szerint követik egymást, a kulcsok pedig mind különbözőek. Alább megadjuk szövegesen a Fibonacci keresés algoritmusát. A felírást azon feltétel mellett tesszük meg, hogy legyen egyenlő az Fibonacci számmal. (Az algoritmus módosítható tetszőleges pozitív egész esetére is.)

A Fibonacci keresés algoritmusa:

Az eddigi keresési algoritmusok csak a rendezettség tényét használták ki, lényegtelen volt a kulcsok milyensége. Ha föltételezzük, hogy a kulcsok számok, akkor használhatjuk az úgynevezett interpolációs keresést. A módszer hallgatólagosan feltételezi, hogy a kulcsok növekedésükben körülbelül egyenletes eloszlásúak (majdnem számtani sorozatot alkotnak). Az átlagos keresési idő: . Az elv azon alapszik, hogy a feltételezéseink mellett a keresett kulcs a sorban az értékének megfelelő arányosság szerinti távolságra van a keresési intervallum balvégétől. Azaz ha a balvég indexe , a jobbvégé , a megfelelő kulcsok és , akkor a következő vizsgálandó elem indexe Ha a keresett kulcs megegyezik ezen elem kulcsával, akkor az algoritmus sikeresen befejeződik. Ha a kulcs értéke kisebb, akkor az intervallum jobbvégét, ha a kulcs nagyobb, akkor a balvégét cseréljük le erre a közbülső elemre és az új intervallummal folytatjuk a keresést. Az algoritmust nem részletezzük.

4.1.3. Hasító táblák

A hasító táblák algoritmusai tömböt használnak a kulcsok (rekordok) tárolására, de nem az eddig megszokott értelemben, vagyis a tömböt általában nem töltik fel teljesen és a rekordok nem feltétlenül hézagmentesen helyezkednek el a tömbben. Az algoritmusok a keresésre, módosításra, beszúrásra és a törlésre vannak kihegyezve, tehát ezek a műveletek végezhetők el a struktúrán hatékonyan. Például a legkisebb kulcs megkeresése a struktúrában már nem olyan hatékony, mint a fent nevezettek. Az alapvető problémát az okozza, és ez az oka ezen adatstruktúra bevezetésének, hogy a kulcsok elméletileg lehetséges halmaza - az úgynevezett kulcsuniverzum – számottevően bővebb, mint a konkrétan szóbajöhető kulcsok halmaza, amelyet ráadásul még csak nem is ismerünk pontosan. Egy példával világítjuk ezt meg. Legyen adott egy cég, amelyről ismert, hogy legfeljebb 5000 alkalmazottja van. Minden alkalmazottról bizonyos adatokat nyilván kell tartani a különböző adminisztrációs feladatok elvégzéséhez. Ezen adatok egyike a TAJ-szám, amely kilencjegyű, előjel nélküli egész szám. Ezt az adatot néztük ki magunknak kulcs céljára, mivel a TAJ-szám egyértelműen azonosítja a személyt. Ha csak ennyit tudunk a TAJ számról – és most nem is akarunk annak mélyebb ismereteiben elmélyedni, - akkor ez lehetséges kulcsot jelent. Ennyi eleme van a kulcsuniverzumnak. Ebből az írdatlan mennyiségű kulcsból nekünk viszont csak körülbelül 5000 kell. Azaz a kulcsuniverzumnak csak egy viszonylag szűk részhalmaza, (a teljes halmaz körülbelül -a). Azt viszont nem tudjuk, hogy melyik részhalmaz. A kulcsokat majd a munkatársak hozzák magukkal. Ráadásul a személyi mozgás, fluktuáció révén ezek a kulcsok változhatnak is. Teljességgel nyílvánvaló, hogy értelmetlen lenne az adatbázisunkban egy milliárd rekord számára helyet biztosítani. Elég, ha egy kis ráhagyással mondjuk körülbelül 6000 rekordnak foglalunk le helyet ( körüli ráhagyás). Ezen a helyen kell az 5000 rekordot úgy elhelyezni, hogy a rekordok keresése, módosítása, beszúrása, törlése hatékony legyen. Azt a táblázatot (tömböt), ahol a rekordokat, vagy a rekordokra mutató mutatókat (pointereket) elhelyezzük, hasító táblázatnak, hasító táblának nevezzük az angol hash table elnevezés után. A hasító tábla elemeinek indexelése nulláról indul. A tábla elemeit résnek is szokás nevezni. Külön érdemes kihangsúlyozni a módosítás műveletét, amely tulajdonképpen két részből áll, egy keresésből, majd a megtalált rekord módosításából. Ha ez a módosítás a rekord kulcsmezejét érinti, akkor a rekordot a táblából először törölni kell, majd a módosítás elvégzése után újra be kell szúrni az új kulcsnak megfelelően.

Közvetlen címzésű táblázatról beszélünk, ha a kulcsuniverzum az számok halmaza, ahol az egy mérsékelt nagyságú szám. A tárolási célra használandó tábla (tömb) mérete legyen , amit most válasszunk -nek. Ekkor a kulcs egyúttal az index szerepét játszhatja, azaz a kulcsuniverzum minden kulcsa egyidejűleg tárolható. Ha valamely kulcsot nem tároljuk, akkor a helye, a rés üres lesz. Az üres rés az jelenti, hogy a rés tartalma NIL. (Pointeres változat.) A keresés, beszúrás, törlés algoritmusai ekkor rém egyszerűek, pszeudokódjaik következnek alább. Mindegyik művelet időigénye konstans, . A tömb neve , utalásképpen a táblázatra.

Az ismertetett eset nagyon szerencsés és nagyon ritka. Általában értéke lényegesen nagyobb, mint a ténylegesen tárolható kulcsok m száma. A memóriaigény leszorítható -re úgy, hog az átlagos időigény maradjon a láncolt hasító tábla alkalmazásával. Ebben a táblában minden elem egy listafej mutatója, amely kezdetben az üres táblázat esetén mindenütt NIL. Most nem tételezzük fel, hogy az kulcsuniverzum a számok halmaza lenne, de feltételezzük, hogy ismerünk egy úgynevezett hasító függvényt, amely az kulcsuniverzum elemeit képezi bele ebbe a számhalmazba, az indexek halmazába: . Ez a függvény egyáltalán nem lesz injektív, azaz nem fog feltétlenül különböző kulcsokhoz különböző számértéket rendelni, hiszen az elemszáma sokkal több, mint a indexhalmazé. (Ezt a viszonyt az jelöléssel szoktuk jelezni.) A célunk a hasító függvénnyel az, hogy a kulcsú rekord a tábla indexű réséből indított láncolt listába kerüljön. Ezzel a stratégiával oldjuk fel az úgynevezett ütközési problémát, ami akkor lép fel, ha két különböző kulcs ugyanarra az indexre (résre) képeződik le. (Az ütközésnek nem kicsi az esélye. Ha egy tízemeletes ház földszintjén négyen belépnek a liftbe és mindenki a többitől függetlenül választ magának egy emeletet a tíz közül, akkor -féleképpen választhatnak. Ebből a 10000-ből csak olyan van, amikor mindenki a többitől eltérő emeletet választott. Ha továbbá minden ilyen választást azonos esélyűnek tekintünk, akkor annak esélye, hogy legalább két ember ugyanazt az emeletet választotta eszerint . Tehát majdnem eséllyel lesznek olyanok, akik ugyanarra az emeletre mennek. A híres von Mises féle születésnap probléma esetén elegendő legalább 23 embernek összejönni, hogy legalább eséllyel legyen köztük legalább kettő olyan, akik azonos napon ünneplik a születésnapjukat.) Egy elemnek a listában történő elhelyezése történhet a lista elejére történő beszúrással, vagy készíthetünk rendezett listát is, ha a kulcsok rendezhetők. Az egyes műveletek pszeudokódjai alább következnek. Az egyes műveletek idejeivel kapcsolatban bevezetünk egy fogalmat, az úgynevezett telítettségi arányt, vagy telítettségi együthatót.

4.1. Definíció. A telítettségi arány

Az számot a hasító tábla telítettségi arányának nevezzük, ahol a tábla réseinek a száma, pedig a táblába beszúrt kulcsok száma.

A telítettségi arány láncolt hasító tábla esetén nemnegatív szám, amely lehet 1-nél nagyobb is. Szokásos elnevezése még a kitöltési arány is.

Vezessünk most be két jelölést. A megvizsgált kulcsok átlagos számát jelölje a sikeres keresés esetén és a sikertelen keresések esetén.

4.2. Tétel. A láncolt hasító tábla időigénye

Ha a kitöltési arány, akkor a láncolt hasító táblában

és

A láncolt hasító tábla mérete nem korlátozza a struktúrában elhelyezett rekordok számát. Természetesen ha a rekordok száma igen nagy, akkor az egyes résekhez tartozó listák mérete is igen nagy lehet. Nem ritkán azonban ismeretes egy felső korlát a rekordok számára és azok (vagy a kulcsaik, vagy a mutató a rekordra) elhelyezhetők magában a táblázatban. Minden táblabeli elem (rés) legalább két mezőből fog állni az alábbi tárgyalásmódban, egy kulcsmezőből és egy mutatóból, amely a következő elemre mutat. Minden réshez tartozik egy foglaltsági bit, amely szerint a rés lehet szabad, vagy lehet foglalt. Közöljük két algoritmus pszeudokódját. Az első a megadott kulcsú elemet keresi a táblában. Ha megtalálta, akkor visszaadja az elem indexét, ha nem találta meg, akkor NIL-t ad vissza. A második a megadott kulcsú elemet beszúrja a táblába, ha az elem nincs a táblában és van még ott üres hely. Ha az elem benne lenne a táblában, akkor az algoritmus visszatér. Az algoritmus jellegzetessége, hogy a különböző résekhez tartozó listák egymásba nőnek. Az üres helyek adminisztrálása céljából bevezetünk egy változót, amely mindig azt fogja mutatni, hogy az és a magasabb indexű helyeken a táblaelemek már foglaltak. Az a tábla attributuma lesz. Üres táblára , minden rés szabad és a köv mutatók mindegyike NIL.

A törlés műveletét itt nem tárgyaljuk, hanem külön diszkusszió tárgyává tesszük a feladatok között. A keresés és beszúrás műveletének átlagos idejére érvényesek az alábbi közelítő formulák:

Eddig nem szóltunk a hasító függvényről közelebbit. Egy jó hasító függvény kielégíti az egyszerű egyenletességi feltételt, ami azt jelenti, hogy minden kulcs egyforma eséllyel képződik le az rés bármelyikére, amely az ütközések elleni harcban fontos. Ezen felül lényeges, hogy a függvény értéke nagyon gyorsan számítható legyen. Az igazán nem komoly probléma, hogy a kulcsok sokfélék lehetnek, hiszen általában könnyen konvertálhatók számértékké. Például ha a kulcs szöveges, akkor tekinthetjük a szöveg egyes betűinek az ASCII kódját és minden ilyen számértéket egy magasabb alapú számrendszer számjegyeinek vesszük. Ha a szöveg csak (latin) nagybetűket tartalmaz, akkor minden betűhöz hozzárendelhetjük az ábécében elfoglalt helyének az eggyel csökkentett sorszámát. A – 0, B – 1, C– 2, D – 3, E – 4, ..., Z – 25. Ekkor a ,,ZABA” szöveghez hozzárendelhető szám 26-os számrendszerben . Két nagy módszer osztályt szokás kiemelni a hasító függvények kiválasztásakor, az osztó módszerű és a szorzó módszerű függvényeket.

Az osztó módszer esetében a formulával dolgozunk. Nem árt azonban némi óvatosság az kiválasztásánál. Ha páros, akkor paritása is olyan lesz, mint a kulcsé, ami nem szerencsés. Ha a 2-nek hatványa, akkor a kulcs utolsó bitjeit adja. Általában prímszámot célszerű választani. Knuth javaslata alapján kerülendő az az , amely osztja az számot, ahol és kicsi számok, pedig a karakterkészlet elemeinek a száma. Például ha és a kulcsok az ASCII táblázatbeli karakterek lehetnek és az Fermat-féle prímszámot választjuk, akkor mondjuk háromkarakteres kulcsok esetén a kulcsot tekinthetjük egy 256-os számrendszerbeli háromjegyű számnak is. Ha most itt -mel osztunk, , akkor az osztás eredménye lesz, ami azt jelenti, hogy az eredmény úgy adódik, hogy a szám első jegyét levonjuk a hátsó két jegy által alkotott számból. Ezáltal egymáshoz közeli kulcsok egymáshoz közelre képződnek le.

A szorzásos módszer esetében a formulát használjuk, ahol A egy alkalmas módon megválasztott konstans, . Igen jó tulajdonságokkal rendelkezik az

számérték, amelyet a Fibonacci számokkal kapcsolatban már megismerhettünk.

Nyílt címzések

A nyílt címzésű hasító táblákban nincsenek táblázaton kívül tárolt elemek, listák. A táblaelemeket (a rekordokat) a indexekkel indexeljük. Az ütközések feloldására azt a módszert használjuk, hogy beszúráskor amennyiben egy rés foglalt, akkor valamilyen szisztéma szerint tovább lépünk a többi résre, míg üreset nem találunk és oda történik a beszúrás. Keresésnél szintén ha a számított résben nem a keresett kulcs van, akkor a beszúrási szisztéma szerint keressük tovább. Formálisan ezt azáltal érjük el, hogy a hasító függvényünket, amely eddig csak a kulcstól függött, most kétváltozósra terjesztjük ki, a második változója a próbálkozásunk sorszáma lesz. Ez a szám a számok valamelyike lehet. Azaz a függvényünk: és egy rögzített kulcs esetén a egy úgynevezett kipróbálási sorozatot produkál. Ezek az indexek a indexhalmaznak egy permutációját kell, hogy adják. Ezzel biztosítjuk, hogy ha van még hely a táblában, akkor a beszúrást minden esetben meg lehessen csinálni. Tekintsük ezután a keresés, beszúrás és törlés pszeudokódjait a nyílt címzésű hasítótábla esetén

Törlésnél nem megfelelő a NIL beírás, helyette a rés foglaltságát TÖRÖLT-re kell állítani, mivel a NIL a későbbi kereséseket megzavarhatja. A kipróbálási sorozat végét jelzi ott, ahol annak valójában még nincs vége. Ennek az a következménye, hogy sok beszúrás és törlés után már szinte minden rés vagy foglalt, vagy törölt lesz, ami a keresés sebességét lerontja. Ilyenkor a teljes táblát a benne lévő kulcsokkal újra hasítjuk. A másik lehetőség, hogy a láncolt listás megoldást választjuk, ahol a törlések nem okoznak gondot. Most három gyakran alkalmazott módszer típust említünk meg a nyílt címzésű hasításra.

Lineáris kipróbálás

Ez a módszer a

hasító függvényt használja, ahol az lehet. A formula alapján látható, hogy egy alap hasító függvényből indul ki és a kipróbálási sorozat a számokkal módosítja a kipróbálási indexet, amely nem függ a kulcstól, tehát minden kulcsra azonos. (A kipróbálási sorozat csak a résen keresztül függ a kulcstól, az azonos résre képeződő kulcsok esetén azonos.) A hatás pedig az, hogy ha a vizsgált rés nem megfelelő, akkor tovább lépünk a magasabb indexek felé. A továbblépés ciklikus, azaz a tábla végére érve a másik végén folytatjuk a kipróbálást. A módszernek van egy kellemetlen mellékhatása, az elsődleges klaszterezés. Klaszternek nevezzük a kipróbálási sorozat mentén az egymást követő kitöltött rések összességét. Ezen halmaz elemeinek a száma a klaszter mérete. Nem szerencsés, ha a klaszerek mérete nagy, mert ez lelassítja a hasító tábla műveleteit. Egy példa:

A hasító tábla -szel jelölt elemei a foglaltak. A maximális klaszterméret 3, de van két egyelemű és egy kételemű klaszter is. Ha egy új kulcs a 0 indexű helyre kerülne, akkor a negyedik megvizsgált rés lenne csak megfelelő a tárolásra. Tegyük fel azonban, hogy egy új elem a 14-es résbe kerül, majd a következő a 12-esbe. Ez utóbbinak már egy 6 elemű klaszteren kell végigmennie, hogy megfelelő helyet találjon magának. A klaszterek összeolvadnak!

Négyzetes kipróbálás

A hasító függvény a négyzetes kipróbálás esetén

alakú. Az értékei itt is a . A értékeket úgy kell megválasztani, hogy a kipróbálási sorozat kiadja az összes rést. A kipróbálási sorozat itt is csak a réstől függ, holott az számnak permutációja van. A klaszterezés jelensége itt is fellép, de nem olyan súlyos, mint a lineáris esetben. Itt másodlagos klaszterezésről beszélünk, mivel a klaszter elemei nem egymás mellett, hanem a kipróbálási sorozat mentén helyezkednek el. Egy lehetőség például egy négyzetes kipróbálásra, ha a korrekció úgy alakul, hogy az értékekre a zérus, majd egy, azután három stb. értéket vesz fel, szabályát tekintve minden értéknél az addigi értékek összege lesz. Természetesen ez az eset nem minden táblaméret esetén megfelelő. Ha azonban a táblaméret 2-nek hatványa, akkor valóban kiadja az összes rést.

Dupla hasítás

A dupla hasítás a

hasító függvényt használja. Láthatóan minden réshez általában különböző sorozatot ad, azaz a kipróbálási sorozatok száma , ami arra ad reményt, hogy a módszer az előzőekhez képest jobb tulajdonságokkal bír. Mindenesetre a megválasztásakor arra kell ügyelni, hogy az mindig -hez relatív prímet szolgáltasson. Ellenkező esetben a kipróbálási sorozat csak a tábla elemeinek a -edrészét adná, ahol az és a szolgáltatott érték legnagyobb közös osztója. Ha 2-hatványa és páratlan értékeket ad, az megfelel a feltételeknek. Ugyancsak megfelelő, ha prímszám és mindig kisebb, mint , de pozitív. Legyen prím és legyen

Válasszuk az -et. A kulcsok legyenek négyjegyű számok. Az -es kulcsra , és , . A kipróbálási sorozat: 299, 600, 200, 501, 101,... . A 9999-es kulcsra , és , . A kipróbálási sorozat: 185, 385, 585, 84, 284,... .

4.3. Tétel. A nyílt címzésű hasító tábla időigénye

Ha a kitöltési arány, akkor a nyílt címzésű hasító táblában

és

4.1.4. Minimum és maximum keresése

Legyen most kulcs elhelyezve egy tömbben, a kulcsok legyenek egy rendezett halmaz elemei (bármelyik kettő legyen összehasonlítható). Feladatunk a legkisebb és a legnagyobb kulcs megkeresése. A legkisebb kulcs megkeresése lineáris idejű és összehasonlítást igényel.

A legnagyobb elemet már összehasonlítással is megtaláljuk ezt követően. Összesen ez összehasonlítást jelent. A két kulcs meghatározási ideje lineáris és az aszimptotika konstansa 2. Ezen a konstanson tudunk némiképpen javítani az alábbi módszer alkalmazásával.

Legyen az elemek száma páros. Először az első két elemet hasonlítjuk össze (ez 1 összehasonlítás), a kisebbet minimumként, a nagyobbat a maximumként tároljuk. Ezután már csak elempárokkal dolgozunk ( van). Összehasonlítjuk az elempár elemeit egymással (mindegyik 1 összehasonlítás), majd a kisebbet a minimummal, a nagyobbat a maximummal (további 2 összehasonlítás). Ha az addigi minimumot, vagy maximumot változtatni kell, akkor megtesszük. Összesen az összehasonlítások száma:

ami és ez kevesebb, mint 2n-3

Ha páratlan számú elem van, akkor további elempár van az elsőt követően és marad még egy egyedüli elem a legvégén. Ezt az utolsó elemet mind az addigi minimummal, mind a maximummal össze kell hasonlítani legrosszabb esetben. Az összehasonlítások száma ennek megfelelően:

Az aszimptotika konstansa 2-ről 3/2-re csökkent.

4.1.5. Kiválasztás lineáris idő alatt

4.4. Definíció. A kiválasztási probléma

Legyen adott egy halmaz ( különböző szám), és egy index . Meghatározandó az halmaz azon eleme, melyre nézve pontosan darab tőle kisebb elem van az halmazban.

Speciális esetben ha , akkor a minimumkeresési problémát kapjuk. Mivel a minimumkeresési probléma összehasonlítással megoldható és ennyi kell is, ezért a probléma lineáris idő alatt megoldható. Ha növekvő sorrendbe rendezéssel próbáljuk megoldani a problémát, akkor mint később látni fogjuk lépésben a probléma mindig megoldható. Nem szükséges azonban a rendezéshez folyamodni, mert a probléma rendezés nélkül is megoldható, ráadásul lineáris időben, amiről alább lesz szó.

4.5. Definíció. Medián

Mediánnak nevezzük az adatsor azon elemét, amely a rendezett sorban a középső helyet foglalja el. Ha páratlan számú elem van az adatsorban, akkor és így a medián indexe a rendezés után . Ha páros számú elem van az adatsorban, akkor , és ekkor két középső elem van a és a indexű a rendezés után. (Alsó medián, felső medián.)

Ha nem említjük, akkor az alsó mediánról beszélünk.

4.1. Példa. A 123, 234, 345, 444, 566, 777, 890 rendezett adatsorban a medián a 444, míg a 123, 234, 345, 444, 566, 777, 890, 975 sorban két medián van, a 444 (alsó medián) és az 566 (felső medián).

A lineáris idejű kiválasztási algoritmusnak szüksége lesz agy segédalgoritmusra, amely egy előre megadott számnak megfelelően az adatsort két részre osztja űgy, hogy az első részbe kerülnek azok az adatok, amelyek nem nagyobbak, a második részbe a nem kisebbek kerülnek.

Az előre adott értéket az résztömb elemei közül jelöljük ki.

4.2. Példa. Az algoritmus munkáját az alábbi tömbön szemléltetjük. Itt most .

A megoldás animációja:

A fontosabb lépések:

Az eljárás befejeztével a tömb indexű elemei nem nagyobbak, mint 5 a indexű elemek pedig nem kisebbek, mint 5.

4.6. Tétel. A KIVÁLASZT algoritmus időigénye

A KIVÁLASZT algoritmus lineáris idejű.

Bizonyítás. csoport alakult ki. Mindegyikben meghatároztuk a mediánt. Ezen mediánok mediánját is meghatározzuk. Az adatok között a mediánok mediánjánál nagyobb elemek számát meg tudjuk becsülni az alábbi meggondolással. Mivel a medián középen lévő elem, így az a mediánok mediánja, amely medián közül kerül ki. Ezen mediánok fele biztosan nagyobb, mint a mediánok mediánja, azaz legalább ilyen elem van (saját magát nem számítjuk bele). Minden ilyen medián csoportjában akkor legalább három elem nagyobb a medánok mediánjánál, kivéve az esetleg 5-nél kevesebb elemű utolsó csoportot, amit szintén elhagyunk. Ezek alapján legalább elem biztosan nagyobb, mint a mediánok mediánja. (Ugyanennyi adódik a kisebb elemek számára is.)

Az 11-es sorban a KIVÁLASZT algoritmus a fentiek szerint a felosztás másik részében legfeljebb elemmel dolgozhat.

A KIVÁLASZT algoritmus egyes lépéseinek az időigénye:

Az időigényeket összegezve érvényes: a

összefüggés. Legyen itt konstansa . Feltételezzük, hogy a megoldás egy bizonyos küszöbtől kezdve, és behelyettesítéssel ezt fogjuk bizonyítani.

Válasszuk -et úgy, hogy a zárójel nem negatív legyen. Ekkor .

Ha ezen felül , akkor a választás megfelelő a kiinduló feltételezésünk teljesüléséhez.