Ugrás a tartalomhoz

A sportmozgások biológiai alapjai I.

Csoknya Mária, Wilhelm Márta (2011)

Pécsi Tudományegyetem, Szegedi Tudományegyetem, Nyugat-Magyarországi Egyetem, Eszterházy Károly Főiskola, Dialóg Campus Kiadó-Nordex Kft.

4. fejezet - Szabályozó rendszerek

4. fejezet - Szabályozó rendszerek

Az emberi szervezet különböző szervrendszereinek működését, a szervezet belső állandóságát, szervezetnek a környezeti változásokhoz való adaptálását a szabályzó rendszerek biztosítják. A klasszikus szabályozó- az ún. neuro-endocrin rendszer, ami az ideg- és az endocrin (belső elválasztású) rendszer együttes működését jelenti. Működésüket összehasonlítva megállapíthatjuk, hogy az endocrin szabályozás lassú, tartós szabályozás azért, mert az irányítás az endocrin mirigyek által termelt váladékkal, a hormon/okkal történik. A hormonok a belsőelválasztású mirigyek váladéktermelő sejtjeiben képződnek. Ahhoz, hogy a hormon hatást tudjon kifejteni, egy meghatározott koncentrációban jelen kell lennie a vérben, ennek megtermeléséhez és a célszervhez juttatásához idő szükséges. Ezért a hormonhatás lassan jelentkezik. A hormonok bomlása (mint kémiai folyamat) ugyancsak időt igényel. A termelés és a bontás folyamatosan lejátszódó események.

Az idegi szabályozás gyors szabályozás. Gondoljunk csak a ragadozó és a préda viszonyára. Pl. ha egy sas meglátja prédáját, hirtelen lecsap rá, ami egy gyors reakció. A neuro-enocrin szabályozásban az idegrendszer befolyással van a hormonális rendszerre. Ezt a kapcsolatot bizonyítjuk a hypothalamo-hypohysealis rendszerrel (ld. később).

Hormonrendszer

Endocrin szabályozás

A hormonok (belső elválasztású mirigyek váladékai) olyan kémiai anyagok, amelyeket a vér szállít a célmirigyhez vagy célsejthez. Ez a klasszikus endocrin szabályozás jellemzője. Ma már ismert az ún. paracrin szabályozás is (ld. később).

A hormonok endocrin mirigyekben, ill. bizonyos szervek (pl. hasnyálmirigy, here, petefészek) speciális sejtjeiben termelődnek. Endocrin mirigyekként ismertek a corpus pineale (tobozmirigy), a hypophysis (agyalapi mirigy), a glandula (= gl.) thyroidea (pajzsmirigy), gl. parathyroidea (mellékpajzsmirigy), gl. suprarenalis (mellékvese), a pancreas (hasnyálmirigy), a testis (here) és az ovarium (petefészek) belső elválasztású sejtjei. Vannak a szervezetben olyan szervek is, amelyek hormontermelő sejteket is tartalmaznak, pl. a hepar (máj), thymus (csecsemőmirigy), a ren (vese), cor (szív), ventriculus (gyomor), duodenum (patkóbél).

A vegetatív idegrendszerrel szoros kapcsolatban álló hypothalamus idegsejtjeinek egy része hormonokat ( neurohormonok) termel, melyeknek fontos szerepe van az agyalapimirigy működésének szabályozásában.

A hormonok kétféle mechanizmus szerint működnek. Egyrészt az endocrin mirigyből való felszabadulásukat követően bekerülnek a véráramba, s azzal eljutnak a célsejtekig (4.1. ábra, A. kép), másrészt az endocrin mirigy hormonja a vérárammal egy következő endocrin mirigy, vagy sejt működését szabályozza (pl. trophhormonok), amely mirigy hormonja ezután eljut a célsejtekig, s azok működésére van hatással (4.1. ábra, B. kép).

4.1. ábra - A hormonok hatásmechanizmusa

A hormonok hatásmechanizmusa

A: egyszerű endocrin sejt-célsejt-, B: endocrin sejt-endocrin sejt-célsejt hatás

A neuro-endocrin szabályozás többféleképpen is megvalósulhat. A legegyszerűbb formában az idegsejtek axonja üríti váladékát a keringésbe, amely közvetlenül hat a célsejtre (hypothalamus egyes sejtjei, 4.2. ábra, A. kép). Bonyolultabb formában a neuron axonjából (hypothalamus) a portális keringésen keresztül (ld. később) a secretum a hypophysis elülső lebenyébe kerül, ahol újabb hormon szabadul fel. Ezt az anyagot a vér elszállítja a megfelelő perifériás endocrin mirigy sejtjeihez, melyek által termelt hormon a célsejtekhez jut, s megváltoztatja azok működését (4.2. ábra, B. kép).

A neuro-endocrin szabályozás harmadik típusa az, amikor a hormon secretum direkt módon hat az autonóm idegrendszer működésére (pl. a pineale direct módon befolyásolja a sympaticus idegrendszer működését; 4.2. ábra, C. kép).

4.2. ábra - A neuro-endocrin működések sémája

A neuro-endocrin működések sémája

A: neuron-célsejt-, B: neuron- endocrin szerv által közvetített-, C: neuron-peripherias endocrin sejt-célsejt kapcsolat

Paracrin szabályozás

A paracrin szabályozás lényege, hogy pl. a bél egysejtű mirigyei által termelt váladéka a sejtből kijutva nem kapillárisokba kerül, hanem diffúzióval jut el a szomszédos sejtekhez (nem nagy távolságra), s hatását ott fejti ki (4.3. ábra, A. kép). A paracrin szabályozás másik módja az autoreguláció. Ennek során a sejtből felszabaduló hormon nemcsak a körülötte lévő szöveti sejtekre, hanem visszahat a felszabadító sejt működésére is. Ezt hívjuk autocrin szabályozásnak (4.3. ábra, B. kép). A vér tehát nem játszik szerepet sem az autocrin, sem a paracrin szabályozásban.

4.3. ábra - Paracrin (A) és autocrin (B) szabályozás sémája

Paracrin (A) és autocrin (B) szabályozás sémája

A hormonok többnyire nem fajspecifikusak. Ez azt jelenti, hogy pl. ha a sertés inzulint embernek adják, ugyancsak csökken a vércukorszint. Maguk a hormonok kétféleképpen hathatnak a célsejt működésére gyors (másodpercek vagy percek alatt kialakuló hatások), vagy lassú változásokat (néhány óra vagy nap alatt kialakuló hatások) kialakítva a sejtekben. A lassan kialakuló hatások esetében a felszabadult hormon a vérplasma specifikus transzporter fehérjéihez kötődik, amelyek elszállítják a célsejtekhez. A transzporter fehérjék a májban termelődnek. A célsejtek közelében a hormon leválik a szállító-fehérjéről, és átdiffundál a sejtmembránon (4.4. ábra, A. kép). A sejt cytoplasmajában egy „receptor-molekulához” kötődik. A hormon-receptor komplex egy aktív molekula, amely a DNS-hez kapcsolódva mRNS-képzést indukál. Az mRNS kivándorol a cytoplasmába, és megjelenésével fehérjeszintézis indul el, melynek eredményeként megváltozik a sejt anyagcseréje. Ilyen módon befolyásolják a sejtek működését pl. a szteroid hormonok és a tiroxin. is sok sejt működését képes megváltoztatni egyszerre.

A gyorsan kialakuló változások egy „másodlagos messenger rendszeren” keresztül fejtik ki hatásukat. A hormon (elsődleges messenger) a sejtmembránon lévő specifikus receptorához kötődik (tehát nem lép be a sejtbe, 4.4. ábra, B. kép). A hormon-receptor kötődés hatására a cytoplasmában megváltozik a cAMP- vagy a Ca2+-szint. A cAMP (ciklikus AMP) ATP-ből képződik az adenilát-cikláz nevű enzim hatására. A cAMP egy protein kinázhoz kapcsolódik, melynek fehérjék foszforilálása a feladata. A fehérje ezzel a foszforilációval inaktív molekulából aktív molekulává válik. Ez a folyamat szintén energia (ATP) igényes. Az aktív fehérje pedig megváltoztatja a sejtben az anyagcsere-folyamatokat. Így hat pl. a glukagon és a noradrenalin. Ennek a mechanizmusnak előnye, hogy kis mennyiségű anyag (hormon) is sok sejt működését képes megváltoztatni egyszerre.

Lehetséges, hogy az endocrin mirigyek sejtjei a szükségesnél több hormont termelnek ( hyperfunkció), vagy a szükségesnél kevesebbet (hypofunkció), de lehetséges, hogy az endocrin mirigy nem termel váladékot (afunkció).

4.4. ábra - A hormonok sejtszintű hatásmechanizmusai

A hormonok sejtszintű hatásmechanizmusai

A: cytoplasmaticus receptoron-, B: másodlagos messenger rendszeren keresztül

A hormonok csoportosítása

A hormonok csoportosítása ma már kémiai felépítésük alapján történik. Ennek alapján megkülönböztetünk:

  1. Szteroid hormonokat (szterán vázas vegyületek, pl. a nemi mirigyek hormonjai, mellékvesekéreg hormonjai).

  2. Aminosav-származékok (ilyenek pl. a tiroxin, adrenalin).

  3. Peptid-hormonok (a polipeptidektől a fehérjéig sokféle molekulaszerkezet előfordul. Pl. insulin, növekedési hormon).

Endocrin mirigyek

a./ Agyalapi mirigy (hypophysis)

Babalakú mirigy, ami a köztiagy aljáról a hypothalamusról egy nyéllel lóg le. Maga a mirigy az ékcsont töröknyergi (sella turcica, ld. „Mozgásrendszerek”) mélyedésében található. Fejlődéstanilag két, a garathám (entodermális) eredetű elülső, és az idegi eredetű (ectodermális) hátsó részből áll.

Az agyalapi mirigy elülső része ( adenohypophysis) tovább tagolható. Egy a nyelet körülfogó részre, a pars tuberalisra, a legnagyobb térfogatú elülső lebenyre (lobus anterior), és az elülső és a hátsó lebeny közti pars intermediara. Az elülső lebenyben secretios sejteket találunk, csoportokba rendeződve, melyek között tágult kapilláris rendszer figyelhető meg. A sejtek immuncytokémiai festésekkel több csoportra oszthatók, melyek mindegyike más és más hormont termel. Ezeket a hormonokat centrális hormonoknak is nevezzük. A centrális hormonok ún. trophhormonok, ami azt jelenti, hogy a hormon egy ún. perifériás endocrin mirigy, vagy sejt hormon termelésére hat.

Az elülső lebeny több hormont is termel, melyek közül a hat legismertebbről teszünk említést.

A hátsó lebenyben (lobus posterior; neurohypophysis) hormontermelés nincs, de benne kétféle hormon tárolódik. Mivel a hátsó lebeny nem termel hormont, csak hormont tárol, ezért neurohemális szervnek nevezik.

Az elülső lebeny hormonjai:

1./ Növekedési (somatotrop, STH) hormon a növekedés, a genetikailag meghatározott testmagasság kialakulásának legfőbb szabályozója (ld. „Csontosodás”), de emellett anyagcserefolyamatok szabályozásában is részt vesz. Ez a hormon fokozza a glukoz és az aminosavak felvételét az izomban (de hat a máj és a zsírszövet aminosav, ill. glukoz felvételére is). Anabolikus hatása miatt a jelenkori dopping kedvelt szere.

A hypothalamus két hormonja a növekedési hormont-serkentő hormon (somatotrop hormon) és a somatostatin (mely gátolja a növekedési hormon termelését) befolyásolja az agyalapi mirigy növekedési hormon termelését. (A somatostatin megtalálható a hasnyálmirigyben is, és csökkenti mind a glukagon, mind az inzulin termelését. (Ld. Sportmozgások biológiai alapjai II. „Emészőkészülék” c. fejezetben). Emellett csökkenti a gastrin, secretin és renin termelést, csökkenti a bélmotilitást. Tehát nemcsak hypothalamicus neurohormon, hanem paracrin funkciója is van, sőt neuromodulátorként is hat a központi idegrendszer idegsejtjeiben.

Az ontogenezis korai szakaszán jelentkező hiányának, vagy csökkent termelésének következménye a törpenövekedés (hypophyser törpe, azaz arányos törpe). A hypophysisből előállított hormon készítményt a törpenövés kezelésére használják. A hormon túltemelése pedig óriásnövekedést ( gigantizmus, arányos óriás) eredményez.

Felnőtt szervezetben történő túltermelődése acromegaliát idéz elő, amikor is az állkapocs, orr, fülek, lábfej megnövekszik.

2./ Pajzsmirigyserkentő ( thyrotroph-stimuláló hormon, TSH) hormon a pajzsmirigy működésére serkentően hat.

A tiroxin (T4) és a trijodtironin (T3) a pajzsmirigy hormonjai. Felszabadulásukat a TRH (Tirotropin Releasing Hormone) indukálja a hypothalamusból (4.5. ábra). Hatására TSH (Thirotropin) szabadul fel a hypophysis elülső lebenyének béta-sejtjeiből. A TSH serkentőleg hat a T3, T4 felszabadulására a pajzsmirigyből. A negatív visszacsatolás elve ideálisan ebben a hormonrendszerben valósul meg. A sejtekre minden esetben a T3 (tirjódtironin) van hatással, tehát a T4 is átalakul T3-á.

4.5. ábra - A pajzsmirigy működését szabályozó hormonok

A pajzsmirigy működését szabályozó hormonok

A TSH-nak is van önálló hatása. Egyrészt zsírszövet felhalmozódást okoz, így a TSH túltermelésnek exophtalmus (szem kidülledése) a következménye, másrészt önálló lipolitikus (zsírbontó) hatással is rendelkezik. Ugyanez a hormon fokozott termelése esetén a pajzsmirigyben megnöveli a sejtszámot (hyperplasia), vagy a sejtek méretét (hypertróphia). Ennek következménye a golyva.

A hyperthyroidizmus (pajzsmirigy túlműködés) egyik felnőttkori megjelenési formája a Basedow-kór (Grave-szindróma). A betegre a kidülledt szem a jellemző, a szemgolyó mögötti kötőszövet elszaporodása miatt.) Ez egy autoimmun betegség, melyben a TSH-receptor ellen antitesttermelés zajlik a szervezetben pajzsmirigy túlműködés alakul ki. A pajzsmirigy túlműködésével megnő az alapanyagcsere (akár 100%-kal is), csökkennek a glikogén és zsírraktárak. A beteg emiatt lesoványodik, feszültebb lesz, cardiovasculáris és pulmonális túlműködés jellemzi. Ez azt jelenti, hogy nyugalmi pulzusa akár 150 ütés/perc értékre nőhet. Az anyagcsere fokozódása miatt jelentősen nő a testhőmérséklet, izzad a beteg, bőre általában nyirkos. Izomgyengeség alakulhat ki, melyet az idegrendszer túlműködése miatt izomremegés is követhet. Élénkül a bélmozgás, gyakran tartós hasmenés, hányás alakul ki. A 20-50 év közötti korosztályt érinti elsősorban. A nők között ötször gyakoribb a megbetegedés, mint a férfiak között. A genetikai háttér mellett jelentős szerepet kap a betegség kialakításában a dohányzás, stressz, ill. bakteriális, vagy virális fertőzések.

A Basedow-kórral ellentétes a hypothyreosis tünetegyüttese a myxoedema, melynek során az alapanyagcsere jelentősen lecsökken (akár az eredeti 40%-ára). Leggyakrabban ez is autoimmun betegségként jelentkezik. A pajzsmirigy szövetét lymphocyták pusztítják, így a szövetelhalás eredményeként tiroxin és trijodtironin sem termelődik megfelelő mennyiségben. A betegség általában idősebb korban jelentkezik. Hatására az érintett személy lelassul fizikai és mentális teljesítményét tekintve is. Külseje is változik. Felpuffad az arca (a bőralatti kötőszövetben az ödéma képződés miatt), vékony lesz a bőre. Az anyagcsere lassulás következményeként rossz étvágy, emésztőrendszeri zavarok, székrekedés alakul ki. A testsúly emiatt lassan gyarapszik. A pulzusszám csökken, gyakran a normál physiologias tartomány alá (<60), a testhőmérséklet szintén csökken, a beteg gyakran fázik.

3-4./ Tüszőserkentő (FSH) és a sárgatest képződését serkentő (LH) hormonok. A tüszőserkentő hormon a petefészekben az éretlen tüszők növekedését és az ösztrogén hormon termelődését idézi elő. Ugyanakkor fokozza a sárgatest serkentő hormon felszabadulást is (ld. Sportmozgások biológiai alapjai II. „Nemi szervek” c. fejezet).

A sárgatest serkentő hormon a tüszőrepedés után képződött sárgatest fennmaradását biztosítja és fokozza a progeszteron termelődését. Az ösztrogén és progeszteron termelés szabályozása az indirekt negatív visszacsatolási elven alapszik, melynek során az ösztrogén és a progeszteron a hypothalamusban termelt releasing-hormonok majd ezeken keresztül az FSH és az LH termelését befolyásolja. Érdemes megjegyezni, hogy az agyalapi mirigy és a hypothalamus között működik egy direkt visszacsatolás is, aminek révén az agyalapi mirigy trophhormonjai a releasing hormonok elválasztását szabályozzák.

5./ Mellékvese kéregre ható ( adenocorticotrop ACTH) hormon. Az ACTH felszabadulását a nucleus paraventriculárisban termelődő corticotrop releasing faktor (CRF) serkenti. Az ACTH termelődése direkt módon hat a zsíranyagcserére, úgy, hogy fokozza a lipolízist (zsírbontás). A zsírraktárak trigliceridjeiből zsírsavak szabadulnak fel, s így az azokból nyert energia segíti az izomműködést, a szénhidrát raktárak szinten tartása mellett. Az ACTH hat a mellékvese kéregállományára, serkentve a glükokortikoidok és mineralokortikoidok felszabadulását/szintézisét. Emellett fokozza a mellékvesekéreg vérátáramlását is.

A glukokortikoidok hatásai az anyagcserefolyamatokban, az immunrendszer működésében és a különböző gyulladásos folyamatokban is tetten érhetők. A cortizol fokozza az aminosavak lebontását, de nem katabolikus folyamatok során, hanem azáltal, hogy gátolja a fehérjeszintézisét aminosavakból. Ilyen módon az aminosavak a glukoneogenezisben használódnak fel. Ennek hatására a raktározott glikogén, ill. a glukóz később kerül lebontásra. Az izomban a cortizol csökkenti a szénhidrát felhasznását is.

Az immunrendszerre, mint szupresszáns hat. Egyrészt csökkenti a lymphocyta-számot, másrészt a csecsemőmirigy atrófiáját okozza. Gátolja a plasmasejtek képződését, és így az immunglobulinok termelődését is. A glukokortikoidok hiánya hypoglikémiát és hypotóniát (alacsony vérnyomás) okoz.

A stresszorok fokozzák a CRF termelését, melyen keresztül a glukokortikoidok termelődését. A stresszorok különbözőek lehetnek. Ílyenek pl. a hideg, éhezés, vérnyomásesés, vérrögképződés, műtét, fertőzések és fájdalom, törések, fizikai túlterhelés és emócionális stressz. ACTH hiányában nem megfelelő a glukagon, a növekedési hormon és a katekolaminok (adrenalin, noradrenalin) termelése sem. Tartós túltermelése gyomorfekélyt, magas vérnyomást, érrendszeri zavarokat okoz, továbbá a nyirokcsomók sorvadása és a fehérvérsejtszám csökkenése következik be.

6./ A tejelválasztást befolyásoló hormon (lactotrop, prolactin). A prolactin (PRL) a tejelválasztást serkentő hormon, melynek hatása csak szülés után érvényesül annak ellenére, hogy termelődése már a pubertás idején megindul. Szülés után ugyanis jelentősen csökken a szervezet progeszteron szintje, ami addig gátolta a prolactin hatásának érvényesülését. A tej ürülése azonban csak oxitocin jelenlétében lehetséges.

Az agyalapi mirigy hátsó lebenyében tárolt hormon az

  1. Oxitocin a símaizom, főleg a terhes méh símaizmának kontrakcióját fokozza közvetetten, ennek a szülés alatt van jelentősége, de hatással van a tejmirigy vezetékeinek izmaira is.

  2. Antidiureticus hormon ( vasopressin) a vesében a nephron tubulusaiban a víz visszaszívását fokozza. Termelődését a vér osmoticus koncentrációja szabályozza (ld. Sportmozgások biológiai alapjai II. „Kiválasztórendszer” c. fejezetben). A vértérfogat szabályozásán keresztül a vérnyomás fenntartásában is fontos szerepet játszik (Ld. Sportmozgások biológiai alapjai II. „Keringési rendszer” c. fejezetben.)

a.a./ Hypothalamo-hypophysealis rendszer

Az idegrendszer befolyásolja az endocrin mirigyek működését. Ezt bizonyítja a hypothalamus és az agyalapi mirigy közötti kapcsolat. A hatás az agyalapi mirigy két lebenyére nem egyforma (4.6. ábra).

4.6. ábra - A hypothalamo-hypophysealis rendszer. A hypothalamus és az agyalapi mirigy elülső (A), valamint hátsó lebenyének (B) kapcsolata

A hypothalamo-hypophysealis rendszer. A hypothalamus és az agyalapi mirigy elülső (A), valamint hátsó lebenyének (B) kapcsolata

1: elülső lebeny, 2: hátsó lebeny, 3: látóideg kereszteződés (chiasma opticum), 4: corpus mamillare, 5: tubero-infundibuláris rendszer eredő magcsoportjai, 6: portális erek, 7: nucleus supraopticus, 8: nucleus paraventriculáris, 9: hypothalamus, 10: hypophysis nyél

A hypothalamus az elülső lebenyt közvetetten, azaz a vér útján szállított hormonokkal befolyásolja. A III. agykamra körül ún. neurosecréciós sejtcsoportok találhatók, (a neurosecreciós sejtek olyan idegsejtek, melyek váladékot is termelnek), melyek együtt az ún. tubero-infundibuláris (kis sejtes magcsoportok; 4.6. ábra, A. kép) rendszert adják. Közülük a nucleus arcuatus a legjelentősebb. A mag sejtjei ún. faktoranyagokat termelnek, melyek a sejtekből a mag körüli kapilláris rendszerbe jutva, nagyobb ereken át (portális keringés; ld. Sportmozgások biológiai alapjai II. „Keringési rendszer” c. fejezetben) az elülső lebenybe kerülnek, és az elülső lebenyi sejtek működését vagy serkentik (releasing faktor), vagy gátolják (inhibiting faktor). Az elülső lebeny hormonjai trophhormonok, egy célmirigyre (perifériás endocrin mirigy), vagy a növekedési hormon esetében a májsejtek somatomedin szintézisére hatva annak hormon termelését befolyásolják. Maga a trophhormon visszahathat a nucleus arcuatus sejtjeinek működésére. A folyamat a negatív visszacsatolás, vagy feed-back szabályozás.

A hypothalamus a hátsó lebenyre közvetlenül, azaz idegi úton hat. Ez a hatás a hypothalamus ún. magnocelluláris (nagy sejtes magcsoportok) rendszerén keresztül jut kifejezésre. A rendszer két fő magja a nuclus supraopticus és a nucleus paraventricularis. Nagyméretű idegsejtekből épülnek fel, melyek hormont termelnek. Ez a hormon az idegsejtek axonjain keresztül az agyalapi mirigy hátsó lebenyébe jut, ott tárolódik, és szükség esetén a vér szállítja tovább.

b./ Pajzsmirigy (glandula thyroidea)

A pajzsporc két oldalán elhelyezkedő két lebenyből álló endocrin mirigy. A két lebenyt egy páratlan hídrész köti össze. A mirigyet kötőszövetes tok határolja, melyen belül az ún. mirigyparenchyma található, ami számos folliculusból (folliculus egy zárt hólyag), közöttük lazarostos kötőszövet, benne ún. parafolliculáris sejtek és gazdag vérérkapilláris rendszer figyelhető meg.

A folliculáris sejtek termelik a thyroglobulint. Ez a thyroglobulin jóddal egyesülve képezi a mirigy hatásos hormonját a trijódtironint (T3) és a tetrajódtirozint (T4), melyek elsősorban a lebontó, azaz az oxidatív anyagcserére hatnak.

A pajzsmirigy hormonnak van egy morphogeneticus hatása is. Embrionális korban hatással van az idegrendszer fejlődésére. Születés utáni ill. gyermekkori alacsony hormonszint következménye lesz az ún. kretenizmus, ami mindig törpenövést és a szellemi képesség csökkenését jelenti. Aránytalan testméretváltozás más okból is bekövetkezhet (torz törpék), de ez nem jár mindig együtt a csökkent értelmi képességgel.

Ha a szervezetben nincs elegendő jód, hypofunkcióhoz vezet. Szervezetünkbe a jód ivóvízzel, jódozott konyhasóval, vagy tengeri hallal kerül. A pajzsmirigy jellegzetes megbetegedése a struma, ennek súlyosabb változata a golyva. Ezekben az esetekben a mirigy kötőszövetes állománya is felszaporodik.

A pajzsmirigy hormon termelését az agyalapi mirigy első lebenyének thyrotrop-stimuláló hormonja (TSH) befolyásolja. Ha a vérben sok a tiroxin akkor az negatívan hat az agyalapi mirigy pajzsmirigyserkentő hormont termelő sejtjeire, de ugyanakkor ez a negatív hatás érvényesül a hypothalamus tubero-infundibuláris rendszer megfelelő sejtjeire is.

A pajzsmirigy folliculusai között is találhatók kisebb-nagyobb sejtcsoportok, ezek az ún. parafolliculáris sejtek. Ezek termelik a calcitonin nevű hormont, ami a vér Ca2+ szintjét csökkenti azzal, hogy megakadályozza a csontokból a Ca2+ mobilizálását. (részletesen ld. „Mozgásrendszerek”).

c./ Mellékpajzsmirigy (glandula parathyroidea)

Négy borsó nagyságú test, amelyek a pajzsmirigy lebenyek hátsó mediális felszínéhez közel helyezkednek el. Köb-formájú sejtjei sorokba (gerendákba) rendeződnek. A sejtek granulumokat nem tartalmaznak. A pubertás körüli időben közöttük ún. acidophil sejtek is találhatók. Hormonja a parathormon, a szerepe a szervezet Ca2+ forgalmában van (ld. „Mozgásrendszerek”).

d./ A hasnyálmirigy Langerhans-szigetei

A pancreas (hasnyálmirigy) a patkóbél kanyarulatában elhelyezkedő kettős elválasztású mirigy. Külső elválasztású része termeli a hasnyálat (ld. Sportmozgások biológiai alapjai II. „Emésztőkészülék” c. fejezetben), belső elválasztású sejtcsoportja (Langerhans-szigetek sejtjei) hormont termelnek. A sziget sejtjei kerekdedek, világosabbra festődnek, mint a külső elválasztású rész sejtjei. A szigetsejtek négyfélék, úgymint A, B, C és D sejtek. Ezek közül a B sejtek termelik az inzulint. Ez a hormon a vércukorszintet csökkenti, mivel segíti a glukoznak glükogén formában történő raktározását. (Ld. Sportmozgások biológiai alapjai II. „Emésztőkészülék” c. fejezet.) Hiányában alakul ki a cukorbetegség. Ez azt jelenti, hogy a vér glukoz tartalma az átlagosnál magasabb. Az inzulinnak fontos szerepe van még a zsír és a fehérje anyagcserében is.

Az A sejtek a glucagont termelik, ami az inzulinnal ellentétes hatást vált ki, tehát növeli a vércukorszintet azáltal, hogy segíti a cukorraktárakból a glukoz felszsabadulást. (Ld. Sportmozgások biológiai alapjai II. „Emésztőkészülék” c. fejezet.)

A C sejtek pancreas-peptidet, míg a D sejtek a somatostatint termelik. Ezek paracrin szabályozó hormonok.

e./ Mellékvese (glandula suprarenalis)

Páros, a vesék csúcsán elhelyezkedő szerv. Narancssárga, tömör tapintású, kötőszövetes tokkal határolt endocrin mirigy. Két részre, a kéreg- (cortex = substantia corticalis) és a velőállományra (medulla = substantia medullaris) különül.

A kéregállomány három szövettani részre, a zona glomerulosara, zona fasciculatara, zona reticularisra tagolódik.

A zona glomerulosaban a sejtek kis csoportokba rendeződnek, a mineralocorticoidot termelik, ami a vesében a Na+ visszaszívását befolyásolja (ld. Sportmozgások biológiai alapjai II. „Kiválasztórendszer” c. fejezet).

A zona fasciculatában a sejtek oszlopos elrendeződésűek, hormonja a glükocorticoid a szénhidrát anyagcserét befolyásolja (ld. Sportmozgások biológiai alapjai II. „Emésztőkészülék” c. fejezet).

A zona reticularis: hormonja az aldoszteron. Mindkét nemben termelődik, ivaréréstől férfiakban megjelenik a tesztoszteron, s ez a két hormon együttesen fejti ki hatását, s jeleníti meg a másodlagos nemi jellegeket. Nőkben, ahol nincs tesztoszteron a testizomzat stb. nem fejlődik olyan mértékben, mint férfiaknál. A két hormon együttes hatásának felismerése indította el sportolóknál a doppingszerek használatát.

A mellékvese velőállománya (idegi eredetű), nagy kerekded sejtekből áll, melyek az adrenalin ill. noradrenalin nevű hormonokat termelik. Az adrenalin hat a cukoranyagcserére, hatása az inzulinnal ellentétes, a glucagonnal megegyező. Az adrenalin nemcsak hormon, hanem a sympathicus idegek transzmiterre is, és a két rendszer együttes hatása (sympathico-adrenális rendszer) a szervezet erőkifejtését növeli.

f./ Ivarmirigyek hormontermelése

Az ivarmirigyek (here és a petefészek) nemcsak ivarsejteket, de hormont is termelnek.

Petefészek esetében ez a tüszőhormon (folliculus hormon FH = ösztrogén) és a sárgatest hormon ( progeszteron).

A tüszőhormont a fejlődő (érő) petesejt körül levő granuláris sejtek termelik. Ovulációkor a kilökődő pete helyén, egy „hegszövet” képződik, s ez termeli a progeszteron nevű hormont.

Mindkét hormon termelését az agyalapi mirigy folliculus stimulaló és sárgatest serkentő hormonja befolyásolja (ld. Sportmozgások biológiai alapjai II. „Nemi szervek” c. fejezetben).

Herében a herecsatornácskák közötti laza kötőszövetben kerekded ún. interstitiális vagy leírójuk után Leydig-féle sejteket találunk. Ezek a sejtek a here állományának mintegy 20%-át adják. Ezek a sejtek termelik a tesztoszteront. A hormon embrionális korban felelős a here és vezetékei kifejlődésért, valamint a herének a testüregből a scrotumba történő vándorlásáért. Nemi éréstől pedig a másodlagos nemi jellegek kialakítását (ld. Sportmozgások biológiai alapjai II. „Nemi szervek” c. fejezetben) szabályozza.

Terhesség alatt a méhlepény is termel hormonokat, tehát belső elválasztású mirigyként is funkcionál. Hormonjai főleg peptid hormonok, pl. choriongonadotropin, ami segíti a sárgatest terhességi fennmaradását, a placentális laktogén feltehetően segíti az emlő növekedését, a relaxin, ami lazítja a méh símaizomzatát.

g./ Tobozmirigy (epiphysis)

A köztiagy tetején található. Melatonin nevű hormont termel, amit a szerotoninból állít elő. A belső cirkadian ritmus, az alvás-ébrenlét ciklus szabályozza az agyműködést, a physiológiai és magatartási funkciókat, mégpedig úgy, hogy az ébrenlét és az azzal kapcsolatos működések napfényben, míg az alvás és az ahhoz kapcsolódó agyműködés sötétben működnek a legoptimálisabban. Mindezen működések összerendezése elengedhetetlenül szükséges a szervezet homeosztázisának, a normális neuronális működések fenntartásának érdekében. A melatonin mennyisége a cirkadián ritmusnak megfelelően változik a szervezetben. A melatonin bontását a fény segíti. Emiatt mennyisége a nap folyamán alacsony, éjszaka pedig a bontás hiányában megemelkedik. Ott, ahol viszonylag alacsony a napfényes órák száma jelentős mennyiségű melatonin képződik, és ez egy betegséget idéz elő, amit skandináv depressio néven ismerünk. Gyógyítása fényterápiával történik.

Egyes kutatási eredmények szerint a melatonin kiváló antioxidáns. Kísérletek szerint kétszer hatékonyabb, mint az E-vitamin, vagy az ascorbinsav.

Bioritmusok

A szervezetben és a mindennapi életben is számos dolog ritmicitást mutat. A ritmusok felborulása gyakran befolyásolja az egyén működési állapotát, tehát megváltoztatja homeosztázisát. A ritmus tulajdonképpen nem más, mint meghatározott sorrendben ismétlődő események láncolata. Ezek lezajlásához mindig ugyanannyi idő kell. Ez a periódus-, vagy ciklus-idő. A ritmusok egy sinus-hullámmal írhatóak le. A hullám két végpontja közti rész az amplitúdó.

A bioritmusoknak három csoportját ismerjük. Az egyik az ún. külső ritmus, amely azt jelenti, hogy az élőlény adott ritmusát csak a külvilági ingerek szabályozzák. Ha ezek az ingerek elmaradnak, az adott ritmus sem jelentkezik. Ilyen pl. a madárdal, amelyet fényviszonyok szabályoznak. Nyári zivatarok idején naponta többször is hallhatunk „reggeli” vagy „esti” madárdalt.

A belső ritmus esetén az élőlény belső szervezete szabályozza a ritmus idejét, lezajlását. Ilyen pl. a szívritmus (pulzus), elektro-encephalogramm (EEG).

A külső-belső ritmusokat a külvilági ingerek is szabályozzák, de ezek elmaradása után is a bioritmus fennmarad. Ezek elsősorban a szervezet időbeli és térbeli tájékozódását szolgálják. Sokféle ritmust ismerünk, különböző ciklusidőkkel. Ilyenek pl. az évszakok, vagy napszakok váltakozásai. Ezek közül a hétköznapi életben a legfontosabbak:

  • a napi ritmus kb. 24 órás ciklusidővel (ld. később),

  • az ár-apály ritmus (12,4 órás ciklusidő),

  • a holdnapos, vagy lunadikus ritmus (24,8 órás ciklusidő),

  • holdhónapos ritmus (29,5 napos ritmusidő), valamint

  • az éves, annuális ritmus (365 napos ritmusidő).

Természetesen léteznek a napi ritmusnál jóval rövidebb ciklusidejűek is. A növekedési hormon felszabadulása 4 óránként ismétlődik; az alvás bizonyos fázisai 9 órás ciklusidővel rendelkeznek.

A hétköznapi életben a napi ritmus a legegyszerűbben megfigyelhető. Ezt a bioritmust cirkadián (körülbelül napi) ritmusnak nevezzük. A ciklusidő egyénenként változik 24,7 és 25,1 óra között. Mivel a napokat 24 órára osztjuk, így nem nehéz belátni, az egyén napi ritmusa és a naptári napi ritmus egyeztetésre szorul. Ezt alapvetően a szociális tényezők fogják megtenni számunkra. A cirkadián ritmus egy külső-belső ritmus, szabályozásában a fény intenzitása is szerepet játszik, de a fény hiányában is fennmarad. Ha kiiktatjuk a fényt a szervezet saját ciklusideje nagyon pontosan követhető (egy állatnál pl. a motoros aktivitás alapján). A ritmusadó tehát a szervezeten belül van. Számtalan kísérlet igazolta, hogy a nucleus suprachiasmaticus (SCN), a hypothalamus egy magcsoportja a belső óra a szervezetben. Ez, mint pacemaker (ritmusadó) működik, alárendelt oscillátorai (szervi ritmusadó rendszerek) működnek pl. az emlősökben a szívben, a tüdőben a májban és a vesében, a fibroblast kötőszöveti sejtek és a tobozmirigyben (Bell-Pedersen és mts., 2005).

Kísérletek szerint a SCN kiirtása megzavarja a hormon-háztartást, az alvás-ébrenlét idejét, a táplálkozási szokásokat és a motoros aktivitást is. A mag szabályozó szerepét igazolja az a tény is, hogy irtása után az alvás napi összideje nem változott, csak az alvás-ébrenlét ritmusa borult fel. Ha hosszú ideig sötétben tartott állat fényt kap, a szabadon futó ritmus megváltozik a fény által befolyásolt rendszerré alakul ismét. Emlősökben az egyetlen terület a SCN, amely a retinából fénybemenetet kap a retino-hypothalamicus pályán keresztül. Ha a fényviszonyok változnak a SCN sejtjeiben megváltozik a per (periódus, óra) gének működése.

Több olyan gént leírtak, amelyek a bioritmus szabályozásában játszanak szerepet az egysejtűektől az emlősökig. Az első ilyeneket per1, per2 névvel illették. A SCN direkt képes szabályozni viselkedés mintázatokat is, míg a periférian lévő szervek oszcillátorai nem. Az alvás-ébrenlét ciklusa tehát az egyik legfontosabb tényező egy személy életében. Hétköznapi értelemben rövidalvókat (napi 6 óránál kevesebb) és hosszúalvókat (napi 9 óránál több) különböztetünk meg. Gyakran a rövidalvókat energikus, ambiciózus, míg a hosszúalvókat befelé forduló, szorongó típusú embereknek tartják.

Alvás-ébrenléti ritmusunktól függetlenül, ismerjük a testhőmérséklet ritmusát is. Ez szintén cirkadián ritmust mutat kb. 25 órás ciklusidővel. A napi testhőmérséklet ingadozás 0,6-0,8 C°, reggel alacsonyabb, késő délután a legmagasabb. Emiatt tapasztalható lázas betegek esetében is a legmagasabb testhőmérséklet délután 5 óra körül.

Érdekes módon szorosan összefügg a testhőmérséklet és a fáradtságérzet változása, bár a kettő szabályozása független egymástól. Tartósan ébren tartott egyének testhőmérséklete napi ritmus szerint változik, de a legalacsonyabb testhőmérséklet értékeknél a legnagyobb az egyén fáradtságérzete. A nap folyamán a legalacsonyabb testhőmérséklet éjjel 1 és 3 óra között mérhető, ekkor a legfáradtabb az egyén.

A hétköznapi életben ismert fogalom a bagoly és a pacsirta típus. A bagoly típusú ember későn kelő, későn fekvő típus, testhőmérséklete reggel lassan emelkedik, az átlaghoz képest 1-2 órás késéssel. Teljesítmény maximuma éjjel 22 óra körül mérhető. A pacsirta típus ezzel szemben korán kel és fekszik, testhőmérséklete reggel gyorsan emelkedik, teljesítmény maximuma reggel vagy délelőtt mérhető. Normálisan egy egyén bioritmusának két csúcsa van egy nap folyamán. Ez átlagosan 9-11, ill. 15-18 óra között mérhető.

A szívritmus (pulzus) változása a testhőmérséklettől független, de azzal parallel változik. Alacsony testhőmérséklet esetén a pulzusszám kisebb, magasabb testhőmérséklet esetén nagyobb. Ennek alapján régebben a háziorvosok egy pulzusmérés segítségével megállapították, hogy mennyire lázas a beteg, ugyanis 0,5 C°-os testhőmérséklet változás 10-15/ perces pulzusszám növekedést okoz.

A veseműködés ritmusa szintén cirkadián ritmus. Érdekes módon külön szabályozódik a vizeletmennyiség és külön az ionösszetétel. A veseműködés éjjel a leglassúbb, nappal a vizeletürítés ritmusa átlagosan 3-4 óra. Ha a vizeletmennyiség, illetve az ionösszetétel ritmusa nem esik egybe, akkor az általában veseproblémákat, működési zavarokat okoz.

A fájdalom érzékenység ritmusának csúcsa 18 és 22 óra között mérhető. Különböző enzimeink felszabadulásában is mérhető ritmus, meghatározott ciklusidőkkel. Az alkohol-dehidrogenáz enzim (az alkohol lebontásához szükséges) felszabadulási minimuma 6-11 óra között, maximuma 14 és 24 óra között mérhető. Ez a magyarázata annak, hogy a reggel elfogyasztott alkohol sokkal tovább kimérhető a szervezetben.

A különböző népszerű bioritmus-számítások alapja az, hogy megfigyelések szerint az ember fizikai, mentális és pszichés állapotában is megfigyelhető egy bioritmus. Ezek szerint a fizikai 23, az érzelmi 28, míg az értelmi ritmus 33 napos ciklusidő szerint változik.

A bioritmus kutatás egyik fontos pontja lett az időzóna fáradtság vizsgálata. Ez annak köszönhető, hogy a repülés a populáció egyre szélesebb rétegeit érinti. Gyakoribbá váltak a kontinensek közti utazások. Az időzóna-fáradtság egy szindróma, amely számos tünet együtteséből alakul ki, alapvetően azonban az alvás-ébrenlét ritmusának megváltozásaként érzékeli a legtöbb érintett. Itt nem szabadon futó ritmusról beszélünk (a fényviszonyok nem állandósulnak), hanem arról van szó, hogy egy megszokott fény-sötét viszonyból egy újabb ciklus szerint működő fény-sötétség ciklushoz kell alkalmazkodni. Az alkalmazkodási zavarok 2-3 időzóna (1 időzóna = 1 hosszúsági fokkal) átlépése után szoktak jelentkezni, s minél több időzónát utazik át az egyén a bioritmus zavarai annál súlyosabbak lehetnek. Ez vegetatív funkciók zavaraitól a teljesítményromláson át a különböző sérülések fellépéséig tarthat. Irodalmi adatok és gyakorlati megfigyelések szerint is a szervezet nehezebben alkalmazkodik a kelet-, mint a nyugat felé irányuló utazásokhoz. Pirritano és mts. (1997) a kelet felé 60 perc/napos, míg a nyugati irányú repülések esetében 90 perc/napos alkalmazkodást állapítottak meg. Ez azt jelenti, hogy a belső ritmusunkat kb. 60-90 perccel tudjuk illeszteni a külső (adott fényviszonyok) ritmushoz.

A repülőutak után a bioritmus átállításához többnyire 2-4 napra van szüksége a szervezetnek, ha azonban az utazás keleti irányú és 8 időzónán is áthalad az utas, az alkalmazkodás egy hétig vagy tovább is eltarthat. Mindezt tovább módosítja az életkor (idősebbek nehezebben alkalmazkodnak), ill. az alvás-ébrenlét egyéni jellemzői. A pacsirtáknak általában nagyobb nehézséget jelent a bioritmus átállítása, megfigyelések szerint azonban a bagoly típus nagyon rosszul tűri a keleti irányú utazásokat.

Mindezek figyelembe vételével alakítják most már a sportolók tengeren-túli útjait, ill. ezen adatok ismeretében állapítják meg, hogy egyes versenyek előtt hány nappal kell megérkeznie a versenyzőnek a verseny színhelyére. Az utazás utáni első két napban általában olyan komoly változások mérhetők a szervezetben, hogy a sportoló terhelése sérülésveszélyes.

A bioritmus átállásának zavarai nemcsak a sportolókat, hanem a gazdasági élet számos szereplőjét is érintik, ezért a bioritmus átállításával foglalkozó kutatások nagyon népszerűek. Számos mérés utalt arra, hogy a melatonin külső bevitelével meggyorsítható az alkalmazkodás, valójában ezeket az adatokat a gyakorlati életben nem sikerült bizonyítani. A SCN direkt módon szabályozza a melatonin termelést a tobozmirigyben, de a periféria ritmusadóit a melatonin közvetlenül nem tudja befolyásolni. Maga a hormon részt vesz az alvás-ébrenlét szabályozásában is. Elképzelések léteznek arra vonatkozóan is, hogy a melatonin szintjének ingadozása befolyásolja a pubertás alakulását is, az adatok azonban egyenlőre nagyon ellentmondásosak.