Ugrás a tartalomhoz

A sportmozgások biológiai alapjai I.

Csoknya Mária, Wilhelm Márta (2011)

Pécsi Tudományegyetem, Szegedi Tudományegyetem, Nyugat-Magyarországi Egyetem, Eszterházy Károly Főiskola, Dialóg Campus Kiadó-Nordex Kft.

2. fejezet - A sejt

2. fejezet - A sejt

A sejt felépítése

A sejt az élő szervezet alapvető önálló működési egysége. Egyes sejtalkotók képesek ugyan önállóan is működni meghatározott körülmények között és rövid ideig, ez azonban nem jelent teljes életfunkciót. Kétféle sejttípus létezik, úgymint prokaryota és eukaryota sejt. A prokaryota sejtnek bár van örökítőanyaga (dezoxiribonukleinsav = DNS, ribonukleinsav = RNS), de az nem határolódik el a cytoplasmától. Az eukaryota sejtek örökítőanyaga sejtmagmembránnal körülhatárolt, s így kialakul a sejtmag.

A sejtet a külvilágtól a sejtmembrán határolja el. Ez biztosítja a sejt alakját, térfogatát, elzárja a sejt belső terét (intracelluláris tér) a külső (extracelluláris) tértől (2.1. ábra, A. kép).

A sejtmembrán alapvetően egy kettős foszfolipid réteg (2.1. ábra, B. és C. képek). A foszfolipidek a trigliceridek egyik fajtája, ahol a glicerinhez két zsírsav és egy foszfátcsoport észterkötéssel kapcsolódik. Ennek következményeként a molekula hydrophil (vízkedvelő) és hydrophob (víztaszító) molekularésszel egyaránt rendelkezik. Vízben oldva a foszfátcsoportok (hydrophil) a víz felé, míg a zsírsavak (hydrophob) a víztől elfordulva helyezkednek el. A kettős rétegben a zsírsavmolekulák egymás felé fordulva rendeződnek.

A membránokban fehérjék ( membránfehérjék) is találhatók. Ezek többségükben nagyméretű molekulák, melyek térszerkezete aszerint alakul, hogy átérik-e a membránt (transzmembrán fehérjék), belemerülnek, vagy csak a membrán (felületi molekulák) felszínén találhatóak. A transzmembrán fehérjék zsírsavak felé eső felszíne apoláros, a foszfátcsoport és a víz felé eső felszíne poláros. A transzmembrán fehérjék döntő többsége csoportokba rendeződve csatornákat képez, amelyek a szabályozott anyagszállítás helyszínei. Minden csatornának (pl. Na+, K+, víz) megvan a saját fehérjeszerkezete. A sejtmembrán külső felszínén gyakran találunk glikoprotein oldalláncokat. A glikoproteinek összetett szénhidrátláncai fontos szerepet töltenek be a sejtek közötti kölcsönhatásokban (ld. „Alapszövetek”). A membránok fontos alkotórésze a koleszterin, amely apoláros molekulaként lipidek membránon történő átjutását segítheti, ill. a membrán „folyékony” szerkezetét biztosítja. Az egymással összekapcsolódott molekulák egymáshoz képest oldalirányban képesek elmozdulni „úszni”, ezért ezt a rendszert folyadék membrán-modellnek hívjuk.

A sejt belső tereiben szintén membránrendszerek vannak, amelyek szerkezetüket tekintve alapvetően azonosak a sejtmembránnal. Az eukaryota sejtekben körülhatárolt sejtmagot (nucleus = N) találunk (2.1. ábra, A. és D. képei), a határoló hártyát sejtmagmembránnak nevezzük. Ezen a maghártyán erős nagyítással pórusok találhatók, melyen keresztül fehérje és nukleinsav anyagcsere zajlik. A magmembránról fűződik le az endoplasmás reticulum (endoplasmaticus reticulum, ER), amely egy kanyarulatos zsákrendszer, s behálózza a sejt teljes belső felszínét. Kétféle típusa sima- (sER) és a durvafelszínű (rER) endoplasmás reticulum (2.1. ábra, A. és E. képek) ismert. A rER cytoplasma felé eső felszínét ribosomák (r) borítják. A ribosomák felszínén zajlik a fehérjeszintézis.

2.1. ábra - A sejt felépítésének (A), valamint különböző organellumainak sematikus képei kiegészítve néhány elektronmikroszkópos felvétellel

A sejt felépítésének (A), valamint különböző organellumainak sematikus képei kiegészítve néhány elektronmikroszkópos felvétellel

B: a sejtmembrán sematikus szerkezete, C: sejtmembrán elektronmikroszkópos képe, D: nucleus (N) benne látható magvacskával (nucleolus Nu), a nyílhegyek a magpórusokra mutatnak. E: mitochondrium (M) körülötte durvafelszínű endoplasmás reticulum(rER) F: Golgi-apparátus (Seress L. felvétele), G: a csilló plasmafonalának keresztmetszete (elektronmikroszkópos felvétel), G1: a csilló plasmafonalának sematikus képe)

A simafelszínű ER a sejten belüli transzportfolyamatokért (szállító folyamatok) felelős. Elsősorban ionok szállítódnak, ill. raktározódnak ciszternáiban. Ezek közül az egyik legfontosabb ion a Ca2+, ami pl. izomösszehúzódáskor kerül a cytoplasmába. A Ca2+-ion mozgása alapvető fontosságú az idegsejtek működéséhez is.

A Golgi-készülék (Golgi-apparátus = G) szintén a sejtmembrán-halmazokból álló sejtszervecske (2.1. ábra, A. és F. képek). Egy háromdimenziós cső és zsákrendszer, amelyben a ciszternák laposak, nagyjából C-alakúak, melyek végeik felé kiszélesednek. Ezekről a kiszélesedésekről fűződnek le a Golgi-eredetű vesiculák, amelyek alapvető feladata anyagok raktározása, szállítása, secretumok módosítása.

A Golgi-készülék a sER-al közvetlen kapcsolatban van, a rER-al, a maghártyával, ill. a sejthártyával vesiculákon keresztül lép kapcsolatba. A Golgi-készülékről fűződnek le a lysosomák (L, 2.1. ábra, A. kép). Ezek apró membránnal körülhatárolt hólyagocskák, amelyek belsejében bontó enzimeket találunk. Az elsődleges lysosomák a Golgi-készülékről lefűződve sejten belüli emésztést végeznek. Ez utóbbi azonban legkifejezettebben az apoptosis során ( programozott sejthalál) jön létre. (A programozott sejthalál a fejlődés, differenciálódás, immunrendszer és a homeosztázis fenntartásában is nagyon fontos szerepet játszik.) A másodlagos lysosomák egyéb anyagokat tartalmazó hólyagokkal történő összeolvadás eredményeként jönnek létre, és emésztik a hólyagok tartalmát. A lysosomák tartalmaznak specifikus fehérje, szénhidrát, vagy nukleinsav bontó enzimeket is.

Minden eukaryota sejt tartalmaz mitochondriumokat (M, 2.1. ábra, A. és E. képek). Valószínűleg eredetileg egy prokaryota sejttípus volt, amely szimbiózisra (együttélésre) lépett egy eukaryota sejttel. Ez a sejtszervecske önálló osztódásra képes, mert megtartotta saját DNS állományát. A mitochondriális DNS mindig az anyai DNS-el egyezik. Alapvető feladata, az energianyerés és az energia raktározása. Ez utóbbi az adenozin-trifoszfát (ATP) nagyenergiájú kötéseiben történik.

Maga a mitochondrium nagyjából hengeres formájú szerv, mérete változó, lehet néhány mikrométer hosszú is. A külső membrán elhatárolja a cytoplasmától. Belső membránjának felszíne rendkívül nagy, mert azon betűrődések, ún. cristák találhatók. Ez a membránrendszer a belső teret kisebb egységekre osztja. A mitochondrium alapállományát matrixnak nevezzük. A citromsav ciklus a mitochondrium matrixában zajlik, míg a cristák membránjába ágyazottan helyezkednek el azok az enzimek, amelyek a terminális oxidáció lezajlásáért felelősek. A citromsavciklus és a terminális oxidáció, a sejtlégzés aerob szakaszai, csak oxigén jelenlétében zajlanak le.

Cytoskeleton (sejtváz) egy hatalmas, fehérjékből felépülő rendszer. Szerepe a sejt állandó alakjának fenntartása, a sejtszervek rögzítése, a sejten belüli transzportfolyamatok (szállító folyamatok) biztosítása oly módon, hogy a különböző vesiculák, nagyméretű molekulák csúszva haladnak felszínén. A microtubulusok tubulin nevű, gömb alakú fehérjékből épülnek fel. 13 tubulin molekula alkot egy gyűrűt, a gyűrűk csöveket hoznak létre. A microtubulusokat a microtubulus organizáló központ (MOC) szabályozza (2.1. ábra, A kép). Irányítja a microtubulusok felépülését és szétesését a sejt működésének megfelelően. Microtubulusokból épülnek fel azok a húzófonalak is, melyek a kromoszómák vándorlását segítik a sejtosztódás során. Az aktin-filamentumok (a, 2.1. ábra, A kép) a legtöbb sejt cytoplasmájában megtalálhatók. Az aktin apró gyöngy-formájú molekula, amely egy kettős gyöngysorrá szerveződik, és a microtubulusokhoz hasonlóan felépül, ill. szétesik a sejt működésének megfelelően. Az aktin filamentumok elsősorban a sejtmembrán alatt húzódnak és azokban a sejtekben, amelyek mozgásra, ill. alakváltozásra képesek nagy mennyiségben találhatók.

Ostor (flagellum) vagy csilló (cilia) segíti azoknak a sejteknek a mozgását, amelyek önálló helyváltoztatásra képesek. Csilló boríthat azonban olyan sejteket is, amelyek maguk nem mozognak, de felszínükön anyag mozgatása történik. Ilyenek pl. a légcső falát borító sejtek (csillós hámsejtek), amelyeknek csillói a légutak tisztántartásáért felelősek.

A csillók összerendezett mozgást végeznek. Működésük egy nagyon stabil microtubulus-rendszer meglétéhez kötött. Ez azt jelenti, hogy kilenc microtubulus pár (duplet) alkotja a külső vázát, közepén pedig két darab microtubulus helyezkedik el (9+2, 2.1. ábra, G. kép) A csillók, ill. ostorok az alapi testekből (corpusculum basale) indulnak. Az alapi test a cytoplasmában található a csilló, ill. ostor microtubulusainak felépítése és elrendezése a feladata. Szerkezete azonban különbözik az ostor és a csilló felszínre nyúló „fonalszerű” részétől. Kilenc microtubulus hármas (triplet) alkotja, míg közepén nincsenek microtubulusok (9+0).