Geoökológiai alapú tájtervezés elméleti és gyakorlati kérdései

Dr. Csorba, Péter, DE Tájvédelmi és Környezetföldrajzi Tanszék
<csorba.peter@science.unideb.hu>

Dr. Horváth, Gergely, ELTE Környezet- és Tájföldrajzi Tanszék
<horvger@caesar.elte.hu>

Dr. Lóczy, Dénes, PTE Környezetföldrajzi és Tájvédelmi Tanszék
<loczyd@gamma.ttk.pte.hu>

Dr. Mezősi, Gábor, SZTE Természeti Földrajzi és Geoinformatikai Tanszék
<mezosi@geo.u-szeged.hu>

Dr. Mucsi, László, SZTE Természeti Földrajzi és Geoinformatikai Tanszék
<mucsi@geo.u-szeged.hu>

Dr. Szabó, Mária, ELTE Környezet- és Tájföldrajzi Tanszék
<szmarcsi@ludens.elte.hu>
Tartalom

Előszó .. vii
1. A földrajzi tájak elemzése, tervezése, kezelése .. 1
2. A táj fogalma és értelmezései (Mezősi G.) ... 2
3. Tájelmzés, tájértékelés (Mezősi G.) .. 3
 1. Ökológiai szempontú tájelmzés .. 3
 2. A tájértékelés típusai .. 10
4. A tájtervezés földrajzi alapjai (Csorba P.) .. 21
 1. A tájtervezés fogalma és célja ... 21
 2. A tájtervezés helye a rokon szakterületek között ... 23
 3. A tájtervezés szükségessége, avagy válságban vannak-e az európai tájak? 25
 4. Példák a megőrzendő nemzeti tájakról .. 28
 5. A fenntartható tájak tervezésének előfeltételei .. 30
 6. A funkcionális folt-folyosó-matrix rendszer kutatásának legfontosabb eredményei 31
 7. A csökkentő emberi hatás alatt álló tájak arányának növekedése 34
 8. A beépítettseg növekedése, a fragmentáció és a metapopuláció kérdése 35
 9. A tájmetria és a tájtervezés .. 37
 10. A tájtervezési elméletek .. 38
 11. A hazai tájtervezés hierarchikus szintjei ... 40
5. A mezőgazdasági hasznosítású tájak értékelésének követelményei (Lóczy D.) 54
 1. A természetföldrajzi alapú földértékelés feladatai és eredményeinek felhasználása 54
 2. Mezőgazdasági célú földértékelés ... 55
 2.1. Paraméterrendszer megközelítés .. 56
 2.1.1. A termőképesség minősítése az ökológiai (termőhelyi) alkalmasság alapján 57
 2.2. Földértékelés síkvidéken ... 58
 2.3. Esattanulmány: földértékelés Beremend környékén .. 59
6. A termőképesség értékelési módszerei Magyarországon (Lóczy D.) 69
 1. A termőképesség értékelésének alapfogalmai és irányzatai ... 69
 2. Földértékelés vagy földminősítés? .. 70
 3. A földértékelés módszertani nehézségei ... 71
 4. A földminősítés kezdetei Magyarországon .. 71
 4.1. Országos termőképesség-felmérés az 1960-as években ... 73
 4.2. Mezőgazdasági termőhelyértékelés („új földértékelés”) az 1970-80-as években 76
 4.3. Közvetlen termőhelyértékelés megyei szinten ... 78
 5. Magyarország agroökológiai potenciálja ... 78
 6. A természetföldrajzi tájértékelés ... 79
 7. Ërtékelés a tájrendezésben .. 83
7. A természetvédelmi rekreációs célú tájtervezés (Csorba P. – Horváth G.) 90
 1. Természetvédelmi és rekreációs területek tervezésének geográfiai alapjai 90
 2. A természetvédelmi területek tervezésének földrajzi vetületei ... 95
 3. Természeti, táji értékek minősítése .. 99
 4. Kísérletek természeti, táji értékek minősítésére ... 101
 5. Természeti és rekreációs célú tájtervezés egyes szempontjai egy mintaterületen 105
8. Ökológiai vártervezés néhány vonása (Mészösi G. – Mucsi L.) .. 111
9. Az erdők szerepe az ökológiai szemléletű tájtervezésben. Esattanulmány a Szigetköz példáján (Szabó M.) ... 121
 1. Az erdők szerepe a tájban .. 121
 2. Az erdők természetteségének és eredetiségének kérdései ... 122
 3. Az erdők használata és rendeltetése .. 127
 4. A biológiai sokféleség szerepe .. 128
 5. Magyarország természetközi erdőségei ... 129
 6. Esattanulmány: tájváltozások a Szigetközben ... 131
 6.1. Az erdőgazdálkodás hatása .. 131
 6.2. A tájszerkezet változásai a Lipót-Ásványi ágrendszerben .. 133
Az ábrák listája

3.1. A területhasznosítási térkép a CLC50 adatbázis alapján ... 7
3.2. Gyepterületek nagyságának változása településekent 1895-2000 között .. 7
3.3. Komplex tájterhelhetőségi mutató (Kollányi 2004 alapján) ... 8
3.4. Az érzékeny természeti terület intenzitástérképe a kistájak fedvényével (Kollányi 2004 szerint) 8
3.5. Agrárgazdaság hatása a táji minőségére .. 13
3.7. Az agrárterületrés (Riedel 2002) ... 14
3.8. Területhasználati interferencia (Bastian – Schreiber 1999 alapján) .. 16
3.9. A Toka vízgyűjtő integrált kockázati modellje (Gruiz et al. 2005) .. 17
4.1. A tájtervezés és más tájkezelési szakterület kapcsolata ... 23
4.2. Európában szinte mindenütt megőrtelek a mezőgazdasági parcellaméretek, esőkent a táji változatosság (Ausztria, Zillertal) ... 25
4.3. Tájképi jellegét meghatározó szénáboglyák Bihárországon (Rošia/Románia) határának 27
4.4. Alcoutim portugál–spanyol határőrség a Guadiana partján. .. 27
4.5. Hagyományos településkép és földhasználat Ny-Norvégiában (Havrá, Bergen közelében) 28
4.6. Szántóképi a mátrix, erdő a tájolóképződő kifejlett és a domb aljának a patakterületi cserjés-fás tájolóképződő folyosó (Szilágyág, Románia) .. 31
4.7. Két erdőfoltot összekötő folyamatos és egyszerűsített klimatozási folyosó hangsúlyos számú kifinomult (Kárád, Kükönd) 32
4.8. A művelés felhalmozása miatt csökkent a mezőgazdasági területek, csökkent a tájolóképződő fás-bokros élőhely lakóinak kedvez. ... 34
4.9. Növekvő völgypátió beépítés az Alpokban (Zillertal) .. 36
4.10. Utak és vasútek által fragmentált táj Amszterdam közelében (Hollandia) 36
4.11. Természeti és táj értékeken gazdag területek .. 41
4.12. Az OTK célrendszerre .. 42
4.13. OTT Országos jelentőségű tájvédelmi terület övezete .. 48
4.14. Tervezett területfelhasználás Esztergom városban .. 50
5.1. A földértékelés sémája a FAIO irányelvei alapján (Lóczy D.) .. 57
5.2. Baranya megye átnézett növényterületésre való alkalmassági térképe ... 39
5.3. A Beremendiek működő gazdasági társaság (a termelőszövetkezet utódöntézzel) vetésterületének növényenkénti megoszlása (1998) 39
5.4. A talajviszonyok FAIO rendszeri alkalmassági táblázatának részlete (értékelés általános szántóközi növényterületési szempontból – Sys, C. 1985 nyomán) ... 60
5.5. A domborzati viszonyok minősítése .. 61
5.6. Az éghajlati paraméterek minősítése ... 62
5.7. A talajtípusok és a talaj fizikai felhasználásának értékelése .. 63
5.8. A humuszállapot értékelése (együttesen növényre) .. 63
5.9. A talajképződő kőzet és a termőréteg-vastagság értékelése ... 63
5.10. A talajvízviszonyok értékelése (a talajvízdúsuk mélysége, m) ... 64
5.11. A talaj kémhatásának és mészállapotának értékelése .. 64
6.1. A búzaterületés termékhelyi kategóriája a Dunántúlon (Géczy G. 1968 nyomán) 73
6.2. Géczy-féle talajértékelő térkép részlete (Bicske környéke, Fejér megye) néhány jellemző talajszelvénnyel és jogosultságon alapuló tartalomtartalomokkal történő minősítésével (Géczy G. 1968 nyomán, egyszerűsítve) 74
6.3. Nagy méretarányú földminősítési térkép részlete (Dömsödi J. 2011 nyomán). 1 = a talajszelvény helye, sorszáma és kódoszám; 2 = talajtípus, altípus, változat; 3 = talajképződő közet; 4 = fizikai talajfelség .. 76
6.4. A genetikai talajtípusok osztályozása búzaterületés szempontjából .. 79
6.5. Az éghajlati környezet potenciál mezőgazdasági szempontú minősítése Veszprémben megye egykori ajkai és papai járása területén ... 81
6.7. A domborzati elemek a SOTER adatbázisban tárolt morfometriai paraméterei 83
9.1. A természetes fafajú erdők természet
9.2. Magyarország erdőségi és az erdőrezervátumok
9.3. Két hazai erdőrezervátum
9.5. Erdőtársulás-csoportok területe Magyarországon
9.6. Az idegenhonos fafajú erdők természetessége erdészeti nagytájanként
9.7. Erdőterületek megoszlása elsődleges rendeltetés szerint
9.8. Erdőtűposok területi részesedése Magyarországon
9.9. Az Öntési tó nyílt vize, nádas és puha faliget erdő komplexe
9.10. Első katonai felmérés térképlapja
9.11. Második katonai felmérés térképlapja
9.12. Harmadik felmérés (rembolált) lapja
9.13. 1:10000 Gauss-Krüger topográfiai térkép
9.14. 1:50 000 tájérték kivágata
9.15. Folyóhálózat – I. felmérés
9.16. Folyóhálózat – II. felmérés
9.17. Folyóhálózat – III. felmérés
9.18. Folyóhálózat – a topográfiai térkép alapján
9.19. I. katonai felmérés – élőhelytérkép
9.20. II. katonai felmérés – élőhelytérkép
9.21. III. katonai felmérés – élőhelytérkép
9.22. Topográfiai térkép – élőhelytérkép

125
114
112

8.1. A városnagyság és az életminőség kapcsolata (Wentz 1976 után)
8.2. A település természeti környezetre gyakorolt hatásának néhány eleme (Sukopp – Wittig 1993 után)
8.3. NYílt villamospálya befűvesítése Hágában
8.4. A térbeli funkciók és érzékenységük Szeged egy részének példáján (Miller – DeRoo 1998 után)

7.1. Az Európai Unió Habitat Directive (92/43/EEC) azaz az Előhelyvédelmi Irányelvnek megfelelő természet-megőrzési területek
7.3. A természetvédelmi és a rekreációs térségek fejlesztése számára fenntartott térségek – funkcionális térségek – elhelyezkedése
7.4. Tátorján tanösvény (Balatonkenese)
7.5. A természetes fafajú erdők természet

6.9. A gyakorlati földminősítés fő tényleg-csoportjai (Dömsödi I. 2011 nyomán)
A táblázatok listája

5.1. A növénytermesztésre való ökológiai alkalmasság meghatározásához feltétlenül szükséges környezeti paraméterek (Lóczy D. 1989) .. 57
Előszó

A jelen digitális tananyag a TÁMOP-4.1.2.A/1-11/1-2011-0025 számú, "Interdiscziplináris és komplex megközelítésű digitális tananyagfejlesztés a természettudományi képzési terület mesterszakjaihoz" című projekt részeként készült el.

A projekt általános célja a XXI. század igényeinek megfelelő természettudományos felsőoktatás alapjainak a megteremtése. A projekt konkrét célja a természettudományi mesterképzés kompetenciaalapú és módszertani megújítása, mely folyamatosan képes kezelni a társadalmi-gazdasági változásokat, a legújabb tudományos eredményeket, és az info-kommunikációs technológia (IKT) eszköztárát használja.
1. fejezet - A földrajzi tájak elemzése, tervezése, kezelése

A földrajzi tájak környezünk olyan egységei, amelyekről a mindennapokban jó és rossz értelemben is beszélünk. Egyfelől joggal hangsúlyozódnak a tájak természeti, környezeti értéke, a regionális tervezések meghatározóinak mondható szintje, védelmi, értékeinek megőrzési fontossága. Másfelől joggal beszélnek az egyedi tájértékek pusztulásáról, a tájak „eltűnéséről”, pontosabban azok karaktere, jellege tűnik el, homogenizálódnak, funkcióik egyveretűbb lesznek és gyakran elvesz azok fontos történeti jellege, a területtel kapcsolatos társadalmi hatásegypüttse.

A következőkben ennek a problémakörnek néhány gyakorlati kérdését foglalja össze a kötet. Szól a tájak adatait előállító elemzésekről, részletesen arról a módszer együttesről, amellyel ezen adatok a tervezés, minősítés, védelem szempontjából feldolgozhatóak. Ezek a módszerek megalapozzák a tájtervezés legfontosabb alapvetéseinek összefoglalását. Itt elsősorban a tájak tervezésének szaktudományi alapjai olvashatóak és nem a tervezés technikai kérdéseiről van szó. Egy, a tájak tervezését érintő projekt, akár a különböző szintű regionális tervezéshez megfelelő szakai összefoglalót szolgálhatnak ezek a módszerek és eredmények.

A továbbiakban a tájak legfontosabb védelmi és kezelési kérdéseit tekinti át az összeállítás. Részletesen beszél a mezőgazdasági területek tájainak tervezésével kapcsolatos feladatokról, azok környezeti, természeti, ökológiai vizsgálati módszereiről, a fontosabb elérhető célokkról, ill. azokról a szempontokról, amelyek egy mikro-mezo régió hasznosítási/fejlesztési terveivel kapcsolatban megválaszolásra várhatnak. Külön fejezet tárgyalja az erdők természetvédelmi kezelésével kapcsolatos legfontosabb szabályokat, a rekreációs területek és a természeti területek esetleges használati konfliktusait is elkerültként törvényt az ökológiai kezelési tervezeteket. Egy igen sajátos területegység, a települések ökológiai tervezésesem az egyes ökológiai paraméterek (légkör, vegetáció) elkülönített elemzésére összpontosít, hanem arról, hogy ezek az információk miként integrálhatók egy település rendezési tervebe.
2. fejezet - A táj fogalma és értelmezései (Mezősi G.)

Így a földrajzban ma úgy tekintjük a tájakat, hogy azok kereteit a természeti tényezők határozzák meg. Pontosabban a (természeti) tájalkotó tényezők – kiegészülve a társadalmi tevékenység jellemző egységeivel – együttanak, a mesterségesek közös használatában alkotnak jellegzetes értékekkel rendelkező lehatárolható egységeket. Ebben a megközelítésben a természeti tényezők elsődlegessége és a többi tájalkotó tényező e kapcsolatrendszert módosító szerepe fejeződik ki, és érthető, hogy emiatt az európai tényezők alapján olykor nehezen lehatárolható néprajzi, történelmi kategóriák használatától gyakran eltekintették. Ezért a mindennapi élethez is kapcsolódó „megélhető” földrajz nagy jelentőségéhez a tájak pontos lehatárolása alapvetően szükséges feladat. Hasonló a pontos területi lehatárolás igénye a környezet biztonságos működésének biztosítására is (Csorba P. 2008), eltérő megközelítéseken közös értékek közötti szerepet játszanak ezen feladatok megoldásában.

Ha tájtervezési, -fejlesztési, -rendezési, -védelmi feladatot kell megoldani, akkor – a megadandó hibahatárok mellett – a tájak pontos lehatárolása alapvető szükséges feladat. Hasonló a pontos területi lehatárolás igénye a környezeti biztonságos működésének biztosítására is (Csorba P. 2008), eltérő megközelítéseken közös értékek közötti szerepet játszanak ezen feladatok megoldásában; sőt, sok olyan „táj” is megjelent, amelyeknek a léte is kétséges (pl. Alvidék, Drávaszél, vagy a Kemenesés-Hegy néven megjelölt részére). A területi tervezés és a területfejlesztés keretében történő alkalmazásra jó példa, hogy a geográfia egyik legsikeresebb terméke a Marosi S. – Somogyi S. által szerkesztett, 1990-ben kiadott (és 2010-ben felújított) ún. „kistájkataszter”.

A rendszer sajátosságairól, szerkezetéről pl., a metrikákról a 4. fejezet szól.
3. fejezet - Tájelemzés, tájértékelés (Mezősi G.)

A táj elemzése, értékelése, ill. a táj tervezése egy csokorba tartozó fogalmak, gyakran egymás helyettesítésére is használják. Ami biztos összeköti ezeket, az a táj tervezése.

Bár a (táj)tervezésnek is több definíció ismert, célszerű olyan megközelítést használni, hogy a tervezés magába fogalja a cél és probléma leírását

a táj elemzését (analízis) – ez „adatszolgáltatás”
a a táj értékelését – ez a szüksébében tekintett „értékelés” is.

Maga a tervezés egyrészt a védelemre, menedzselésre, fejlesztésre vonatkozó célok nak a tervezési területre vonatkozó kifejtését kell, hogy tartalma (pl. a tervezési célok, a fejlesztési célok, ill. a táj általános fejlődésének kifejtése), másrészről az intézkedési koncepciókat kell számba vennie (pl. a szükséges területhasznosítási változtatások, védelmi, kezelési intézkedések stb.).

A tájértékelés és tájelemzés fogalmai tehát ebben a körben (is) logikusan elhelyezhetőek.

A tájelemzés (analízis) az ártvált természet és környezet történelmi és jövőbeli helyzetét, a természeti, az antropogonén sajátosságait, folyamatainak és változásainak leírását kell, hogy tartalma. Azaz olyan adatforrásokat kell összegyűjtíteni, amelyek alkalmasak lehetnek általánban nem összetett elemző vizsgálatokra is (pl. hatásértékelés, potenciállelemzés, természeti/táji jastrom készítése), azaz olyanokra, amelyek alapul szolgálhatnak értékelő vizsgálatoknak is.

A tájértékelést más közegbe foglalva elemzi a természettvédelem. Egy terület természettvédelmi értékelése a természettvédelmi kezelés körébe foglalható. Ez azon alapul, hogy minden védett területre kezelési tervet kell készíteni (1996. LIII. törvény), és a 9/2009 (VII.17.) KvVM rendelet a tartalmat is szabályozza. Az értékelés, ami kezeléshez szükséges alapinformációkat hordozhatja mint valamiféle megfelelés, vagy a menedzelt táji objektumok összehasonlító értékelését, esetleg konfliktusértékelést tartalmaz (ez utóbbi fejezi ki igazán e munkamenet lényegét). Gyakori értékelési eljárás (az adott objektum/táj) különböző szempontú értékelesése, a táj kvantifikált diagnózisa. Ezen eljárásokon és a konfliktuselemzéseken kívül részletesen kidolgozott a táji funkciók hierarchikus rendje is. Ez érthető, hiszen végül is a tájértékelésnek, tervezésének az egyik lényegi kérdése (hanem a legfontosabb) az egyes táji egységek funkciójának (vagy funkcióinak) meghatározása.

Akármilyik megközelítést is választjuk, mind az elemzés, mind az értékelés eltérő irányok mentén valósulhat meg – a tervezés, menedzselés, védelem, működtetés szempontjából. Nagy vonalakban három ilyen fő megközelítés határozható meg. A táj analízise, vagy a táj értékelése (pl. a konfliktusok) ökológiai, ökonómiai és szociális-társadalmi szempontok szerint történhet. Minden vizsgálatnál nagyon hasznos ezeket megkülönböztetni, főként az értékelési irányt, hisz a céloktól függően nagyon eltérő eredményeket kaphatunk egy funkció vagy konfliktus értékelésénél. Egy tájuk, területnek pl. a területfejlesztési célú tervezésénél a célknél megfelelően többhati funkció nyerhet prioritást, sőt ezek kombinálódhatnak is, vagy más-más konfliktus kerülhet előtérbe. A nehézség az, hogy ez a három szempont gyakran kombinálódik egy-egy elemzésnél, értékelésnél, és komoly feladat lehet előállítani ezek kapcsolódás mértékét. Pl. mennyire tekintek egy fejlesztési célú területhasználati változtatást ökológiai, gazdasági vagy épp szociális szempontból fontosnak (Meyer 2003).

1. Ökológiai szempontú tájelemzés

A táj elemzése az alkotó tényezők (és azok adatainak) összegyűjtésén alapuló feladat. Ez természetesen egyfajta értékelés megalapítását is jelenlété, ugyanis ennek az elemző folyamatnak két dimenzija is ismeretes: az egyik egy szakmai szint, ami a valóság képének (számszerű) megragadására kívánatos, ennek keretében gyűjtjük nagyon szerteágazó rendszer szerint a hatótényezők adatait. A másik szint viszonyítást jelent, ennek keretében azt lehet megállapítani, hogy az érték az alapértékhez (vagy valamilyen szabványhoz) viszonyítva milyen szintet ér el. Ez elsősorban megkülönböztet a hallgatásra. A másik szint viszonyítást jelent, ennek keretében azt lehet megállapítani, hogy az érték az alapértékhez (vagy valamilyen szabványhoz) viszonyítva milyen szintet ér el. Ez elsősorban viszonyítást jelent, ennek keretében azt lehet megállapítani, hogy az érték az alapértékhez (vagy valamilyen szabványhoz) viszonyítva milyen szintet ér el. Ez elsősorban megkülönböztet a hallgatásra.
összálállítás azonban nem az ilyen, utóbbi irányú szaktudományi válaszok módszereit és kérdéseit mutatja be elsősorban, hanem a táj tervezésénél használatos logikához kapcsolódik. Itt a rendszer által hordozott (elsősorban mért) értékeket, lehetőségeket (kivánatosan parametrizálva) és a tervezett szcenárió által képviselt értékeket hasonlítjuk össze.

A tájak, térségek állapotának bemutatására, a változások nyomon követésére különböző minőségi és mennyiségi mutatószámok, indikátorok alkalmazhatóak. Jelenleg nincs egységes szabályozás arról, hogy milyen módszerekkel, mutatókkal kellene egységesen mérni a tájakat az EU-ban. Az OECD tartalmaz ugyan ajánlást, de ez főként a mezőgazdasági jellegű tájak mérésével foglalkozik.

A táj sok szempontú elemzőt az eltérő céloknak megfelelően számos, eltérő tartalmú adat alapozhatja meg. A kérés persze első olvasatra nem bonyolult, hisz akármilyen módon is, de a talaj, a víz (felszíni és talajvíz), a levegő, a klíma, a fajok, az életközösségek, a tájkép kapcsolatos biotikus és abiotikus tényezőit kell számba venni. Sőt újabban a tájakat a tájépítés szempontjából is megjelenő tájai elemek, objektumok alakmérése is szerepet kap. Ennek az adatgyűjtésnek az a logikai háttere, hogy jelentős erősítésének történt a táji adottságok, tájelemek mérhetőségének kidolgozásának (Kollányi 2004). Azt azonban, hogy ezeket milyen méterben és minőségben kell előállítani, az függ a tervezett vizsgálat menetétől (gyakran a nem szükséges tényezők kizárása a legnehezebb dolgok egyike, mert ehhez már annyira kell ismerni az adott rendszer működését, hogy meg lehessen határozni, hogy mi fontos és mi nem).

A legegyszerűbb felosztás szerint az elemzésre szokás egyedi és komplex paraméter együtttest meghatározni. A következő összefoglalóban ezt felosztást követjük, először a tájalkotó tényezők szerinti egyedi, majd az összetett paraméterek tekintjük át. Az egyedi tényezők csoportjában az adatok elemzéséhez két eltérő lehetőség kínálkozik:

1. integrált módszer (szelektív térképezés, pl. potenciálisan védendő biotóp reprezentatív térképezése)

2. szigorúan elemző módszer, amelyben a paramétereket a rendszert elemekre bontva vizsgáljuk (pl. a víz Saprobíria indexe).

Az elemzés adataiból is ekkor a vízminőség, állapotra vonatkozó következtetést levonni. Sőt újabban a tájalkotás az adatgyűjtésnek az a logikai háttere, hogy jelentős erősítésének történt a táji adottságok, tájelemek mérhetőségének kidolgozásának (Kollányi 2004). Azt azonban, hogy ezeket milyen méterben és minőségben kell előállítani, az függ a tervezett vizsgálat menetétől (gyakran a nem szükséges tényezők kizárása a legnehezebb dolgok egyike, mert ehhez már annyira kell ismerni az adott rendszer működését, hogy meg lehessen határozni, hogy mi fontos és mi nem).

Az állóvizek ökológiai állapotát számos paramétercsoport keretében mérünk. A vízmennyiségnek több közből a szervesanyag térhélése mértéket szokás nyomon követni, a szaprofitás index értelmezésehez több országban szabvány is van (Németországban pl. DIN 38410), vagy a savanyúság mérhető (Horn, in: Bastian – Schreiber 1999). Az állóvizeknél a szakos morfometria (pl. átlagos és maximális mélység, tájékimérség, tájékimérség) adatait a további értékeléshez elő kell állítanunk. A mérsékelés értékeit követően, hogy milyen adatokat az adott rendszer működésében, hogy mi fontos és mi nem).

Az állóvizek ökológiai állapotát számos paramétercsoport keretében mérünk. A vízmennyiségnek több közből a szervesanyag térhélése mértéket szokás nyomon követni, a szaprofitás index értelmezésehez több országban szabvány is van (Németországban pl. DIN 38410), vagy a savanyúság mérhető (Horn, in: Bastian – Schreiber 1999). Az állóvizeknél a szakos morfometria (pl. átlagos és maximális mélység, tájékimérség, tájékimérség) adatait a további értékeléshez elő kell állítanunk. A mérsékelés értékeit követően, hogy milyen adatokat az adott rendszer működésében, hogy mi fontos és mi nem).
A felszíni vizekből 50-60 féle adatot kell gyűjtenünk, amelyek további komplex mutatók számítására, vagy épp nagyon is gyakorlati feladatok megoldására szolgálnak alapul. Ilyen a vizek öntisztlázai képességének becslése, vagy a felszíni vizek part menti területein a szennyezés visszatartási képesség becslése, azaz ennek a zónának a filter és puffer funkciója, vagy a (lejtősszög, talaj mechanikai összetétel, ősfelszínborítás által számlítható) lefolyás-szabályozási funkció meghatározása (vázlatat lásd a következő fejezetben a tájak funkcióinál).

A felszín alatti vizekkel kapcsolatban ismert, hogy ugyan a Föld 2/3-ának felszínén víz borítja, mennyiségeleg csak kevés kötődik a szilárd felszínhez, és annak is kis része felszín alatti víz. De mégis az ivóvíz-használat jelentős része ebből van. Magyarországon a 80-as évektől a felszín alatti vizeket érintő vízkitermelés csökkenő, ma kb. 2500 ezer m³ nap mértéktől. Ebben a legnagyobb (közel féle) arányban a rétegvizek, majd a parti szűrősekből (az összes termelés kh. harmada), a karszt- és a talajvizek vesznek részt (Mezősi 2008). A felszín alatti vizek minőségét egyrészt a földrajzi környezet határozza meg. Pl. az áramlás, hőmérséklet ilyen tényező, ill. az üledék szemcsemérete – mivel az agyagos 5% alatti porozitással szemben a homokosé 15-30% – további tényező ebből a szempontból az áteresztőképesség (K érték), amely a talaj és rétegvízrendszerek közötti áramlásokat szabályozza. Másrészt a minőséget a felszín közeli szennyezések okozta terhelések befolyásolják.

A vízhasználatban külcskérdés: mennyi felszín alatti vizet használunk fel és mennyit lehetetlen használni? Ettől függ ugyanis annak megítélése, hogy mennyire terhelhető szennyezéssel ez a víz tömeg (naggyobb tömeg elvileg jobban), és ezek alapján lehet pontos cselekvési tervek megfogalmazni a felszín alatti vizek védelmére.

A klima és legevő állapotának elemzéséhez az ismert hőmérsékleti és klímaadatok: napfénytartam (intenzitás, évi menet), hőmérséklet (amplitúdó, évi menet és közepes értékek), csapadék (mennyiség, évi menet), légnyomás, szél mértadatai szükségesek. Ezekkel a fokozatos indexek állíthatók elő, illetve összetett vizsgálatok végezhetők, amellett, hogy az adatok a tágaszk laufolajszabályozási funkció meghatározása (vázlatat lásd a következő fejezetben a tájak funkcióinál).

A levegő állapotáról általánosságban azért nehéz beszélni, mert a meghatározó tényezők, mint a szennyező anyagok koncentrációja, vagy a légkör meteorológiai folyamatai és számos más tényező, külső és belső hatással vannak. A levegő kibocsátás értéke az ipar és közlekedés technológiai korszerűsítése elhanyagolható, különösen a kéndioxid kibocsátás értéke az ipari és közlekedés technológiai korszerűsítésével megnövekedik. A kibocsátás értéke az ipari és közlekedés technológiai korszerűsítésével megnövekedik, különösen a kéndioxid kibocsátás értéke az ipari és közlekedés technológiai korszerűsítésével megnövekedik.

A levegő állapotáról általánosságban azért nehéz beszélni, mert a meghatározó tényezők, mint a szennyező anyagok koncentrációja, vagy a légkör meteorológiai folyamatai és számos más tényező, külső és belső hatással vannak. A levegő kibocsátás értéke az ipar és közlekedés technológiai korszerűsítésével megnövekedik, különösen a kéndioxid kibocsátás értéke az ipari és közlekedés technológiai korszerűsítésével megnövekedik.

A levegő állapotáról általánosságban azért nehéz beszélni, mert a meghatározó tényezők, mint a szennyező anyagok koncentrációja, vagy a légkör meteorológiai folyamatai és számos más tényező, külső és belső hatással vannak. A levegő kibocsátás értéke az ipar és közlekedés technológiai korszerűsítésével megnövekedik, különösen a kéndioxid kibocsátás értéke az ipari és közlekedés technológiai korszerűsítésével megnövekedik.

A levegő állapotáról általánosságban azért nehéz beszélni, mert a meghatározó tényezők, mint a szennyező anyagok koncentrációja, vagy a légkör meteorológiai folyamatai és számos más tényező, külső és belső hatással vannak. A levegő kibocsátás értéke az ipar és közlekedés technológiai korszerűsítésével megnövekedik, különösen a kéndioxid kibocsátás értéke az ipari és közlekedés technológiai korszerűsítésével megnövekedik.

A levegő állapotáról általánosságban azért nehéz beszélni, mert a meghatározó tényezők, mint a szennyező anyagok koncentrációja, vagy a légkör meteorológiai folyamatai és számos más tényező, külső és belső hatással vannak. A levegő kibocsátás értéke az ipar és közlekedés technológiai korszerűsítésével megnövekedik, különösen a kéndioxid kibocsátás értéke az ipari és közlekedés technológiai korszerűsítésével megnövekedik.

A Kárpáti-medence növényzetének faji összetétele az éghajlat, a domborzat, a litológia/talaj és a vízellátás függvényében alakul. Ezek közül az éghajlati adottságokhoz leginkább illeszkedő módon, azaz zonálisan két nagy övezet húzódik (ezek illeszkednek a felsorolt más tájalkotóhoz is):

1. lombhullató erdők – bükkös, tölgyes, vagyis hegyvidéki és dombsági növénytársulások határolhatók el (a középhegység és a Dunántúl területére jellemző).

2. erdőszystepp – homoki, pusztai erdők, sziki növényzet, lápok (a folyók menetére és az Alföld területére jellemző).

A vegetáció antropogén érintettséget jól jelzi, hogy Magyarországon pl. a ma leírt 470 asszociációból 350 természetes vagy természetközeli, 120 antropogén eredetű, 114 gyomjellegű (Borhidi–Sánta 1999). A hatás mértékéről informáló hemeróbia szintek a tervezés hasznos alapadatai lehetnek. A hatás miatt is az értékes növénytársulások hasznosan használhatóak.

A talajtulajdonságainál nemcsak fizikai értékekre kell gondolni (a szemcsenagyság persze már szükséges az átszivárgás számításához), hanem a kémiai, biológiai paraméterekre is. A talajtulajdonságok ismerete fontos abban, hogy meghatározzuk, hogy hol, miként kell csökkenteni az egyre intenzíverebb emberi hatások nyomait (3.1. táblázat). A talajok használhatóságának szempontjából két komoly korlátozó csoportot szokás említeni. Az egyikbe a talajt érintő (biológiai, kémiai, fizikai) degradációs folyamatokat sorolják, ezeket tekinthetjük inkább természeti eredetűeknek, bár a hatótényezőket a társadalmi tevékenység jelentősen módosíthatja. A degradáció ma sok szakember számára azt jelenti, hogy a talaj elvárt funkcióinak megjelenését (pl. termőképességet) bizonyos tényezők akadályozzák (Várallyay 2001), illetve a funkciók zavartalan működését veszélyezteti. A talajvédelemi stratégiák két irányba próbálnak hatni: egyrészt elérni a talajra gyakorolt kedvező és káros hatások megelőzését, mérséklését vagy az elfogadott tényezők hatását. A másikba a talajt érő szennyeződések sorolhatók.

3.1. táblázat A talajt érő környezeti terhelések tendenciái (Bulla–Vári 2002 alapján)

<table>
<thead>
<tr>
<th>Terhelés</th>
<th>Ok(ek)</th>
<th>Tendencia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talajsavanyodás</td>
<td>Légköri savasodás</td>
<td>Nincs adat, feltehetőleg csökkent</td>
</tr>
<tr>
<td>Erózió, defláción (énr 2,3 illetve 1,4 millió hektár)</td>
<td>Mezőgazdasági táblamérétek és művelési módok változása</td>
<td>Nincs adat, feltehetőleg csökkent</td>
</tr>
<tr>
<td>Szántóterület</td>
<td>Tulajdonviszonyok változása</td>
<td>Stagnál, csökkent</td>
</tr>
<tr>
<td>Erdőterület</td>
<td>Erdőtelepítés</td>
<td>Lassan nő</td>
</tr>
<tr>
<td>Művelésből kivont terület</td>
<td>Tulajdonviszonyok, ipar, közeledés, infrastruktúra</td>
<td>Lassan nő</td>
</tr>
</tbody>
</table>

Komplex mutatók

Az előzőekben bemutatott domborzat, vízrajz, talaj, vegetáció és klíma mutatóin kívül gyakran ezekből a mutatókból – újabb komplex mutatók is készíthetők (pl. terepváltozatossági mutató, terhelhetőségi mutató, területhasználati mutató). Ezek közül pl. a területhasználatok tekintetében egy ilyen komplex mutatónak. Ezek a
CORINE (Magyarországra is az 1990-es, 2000-es és 2006-os adatházisból érhetők el A több tücat (EU ajánlás szerinti) területhasználati kategóriát tartalmazó digitális adatok használhatóak táji szintű statisztika készítésére. A feddvény további elemzésével jól meghatározhatók a táji mintázatok, a fragmentálódás, a szabdaltság (Kollányi 2004 – 3.1. ábra).

3.1. ábra - A területhasznosítási térkép a CLC50 adatbázis alapján

3.1 ábra A területhasznosítási térkép a CLC50 adatbázis alapján (részletes jelmagyarázat: http://www.fomi.hu/corine/clc50_index.html)

Idősoros adatokat egymás mellé helyezve nemcsak a táj jelenlegi állapotáról kaphatunk képet, hanem a tájban (az egyes paramétereiben) bekövetkező változásokat is nyomon követhetjük (3.2. ábra). A településsoros statisztikai adatbázisok (pl. KSH T-STAR, ÁMOK) alapján adott időszakra vonatkozóan dinamikus mutatókat képezhetünk.

3.2. ábra - Gyepterületek nagyságának változása településenként 1895-2000 között
3.2. ábra Gyepterületek nagyságának változása településenként 1895-2000 között (Kollányi 2004 után)

Hasonló komplex mutató a táj terhelhetőségét az érzékenysége alapján figyelembe vevő számítás. Az érzékenységnél a domborzat, vízrajz, talaj, területhasználat, infrastruktúra, településszerkezet, tájsebek adatai alapján készült a komplex mutató. Az egyes vizsgálati paraméterek az adott célnak megfelelően változtathatók (3.3 ábra).

3.3. ábra - Komplex tájterhelhetőségi mutató (Kollányi 2004 alapján)

3.3. ábra Komplex tájterhelhetőségi mutató (Kollányi 2004 alapján)

3.4. ábra - Az érzékeny természeti terület intenzitástérképe a kistájak fedvényével (Kollányi 2004 szerint)
3.4. ábra Az érzékeny természeti területek intenzitástérképe a kistájak fedvényével (Kollányi 2004 szerint)

A tájképpel kapcsolatos adatok

E kérdéskör kvantitatív mérési igényeinek kielégítésére sokféle módszert kíséreltek meg alkalmazni. Átfogó hazai eredményről nem lehet számot adni, még akkor sem, ha itt nem feltétlenül egy semleges, összehasonlítható – pl. pénzben kifejezhető – értékelést vár el (pl. egy területi tervező), hanem egy összehasonlítható relatív skála is sok információt adhat. Az abszolút, pl. pénzbeli értékelési módszere példa lehet az, amit a tájak esztétikai adottságainak mérésére többen úgy javasolnak, hogy ezt azzal az összeggel fejezzük ki, amennyit az ember hajlandó arra költene, hogy élvezzze az esztétikai élményt (pl. egy nemzeti park, egy barlang esetén készültek ilyen mérések idehaza és külföldön – Marján 2000, 2001). Ennél sokkal elterjedtebb a relatív súlyozás módszere.

Közvetlenül a tájak esztétikai értékének meghatározásához szolgálhat hasznos alapadatként a látványmutató, amely az adott vizsgálati területgyökerére eső – a látvány szempontjából nagy jelentőségű – területhasználat típusokat méri (ehhez pl. számítása való és a látvány szempontjából fontos területhasználatok szegélyeinek hossza, a területhasználatok nagysága, változatossága – Kollányi 2004). A látványmutató meghatározásához egy terepmodellből a GIS által is kínált, a tájtervező mérnök által szívesen használt, a tájakat fontos információval ellátó beláthatóság szolgálhat alapul (Mezősi 1991). A tájképi értéke jellemzését szolgálhatja a befolyásoltság index, amely a területek szabadságára, vonalas infrastruktúra létesítményekkel történő „terheltségére” utal (Kollányi 2004). A szegélyek számításánál a vonalas infrastruktúra azon létesítményeit veszik számításba, amelyek csökkentik a tájképi értékét és növelik az antropogén befolyásoltságot (pl. vasutak, utak).

Monitorozás

A környezeti adatok monitorozásának az a célja, hogy a környezetállapot változásait nyomon követhessük. Ennek különösen a környezetvédelmi intézkedések szempontjából van fontos szerepe, ahol pl. a negatív
környezeti változások korai, gyors felismerése, mértékének megállapítása segítheti az értékmegőrzést, ill. jelenthet támogatást a környezetpolitikai döntésekhez. A környezeti monitorozással nemcsak a legfontosabb környezeti paraméterek (indikátorkék) minőségi kontrolla valósulhat meg – ami egyben jelentheti a fennálló környezeti terhelés diagnózisát is –, hanem a környezeti intézkedések ellenőrzéséhez (pl. egy hulladéklerakónál telepített talajvíz kutak adatai informálnak erről) is alapul szolgálhat.

2. A tájértékelés típusai

A táj értékelése több szempontból is elvégezhető. A minősítés szokásos esetei lehetnek: az értékközlés (pl. 5 t/ha az évi talajerózió a táblán); az összevetés (pl. magas talajerózió káros a termőképességre, és jelenlévő gondolatokban); relatív összehasonlítás, ahol jellemző pl. minél kisebb az érték a megfelelő alakú adatok esetében. Szűkebb értelemben vett értékelés (pl. ifjú erdő), az adatokra való hitelességének szintjével. Így pl. egy területen a táji funkciók megállapítása, a használati kockázatok, konfliktusok azonosítása valós tervezési problémákat jelez, és segíthet megoldásukban.

3.2 táblázat

<table>
<thead>
<tr>
<th>Értékközlés (a mért adatok) közzététele</th>
<th>Az adatok minősítése</th>
</tr>
</thead>
<tbody>
<tr>
<td>Az új talajvízszint alakulásának sebessége 320 mm/év.</td>
<td>Az új talajvízszint alakulásának sebessége nagyon magas</td>
</tr>
<tr>
<td>Ezen a szántón a talajerózió mértéke 20 t/ha.</td>
<td>Ezen a szántón a talajerózió mértéke nem tolerálható</td>
</tr>
<tr>
<td>A talajvíz nitrogéntartalma 80 mg/l értéket ér el.</td>
<td>A talajvíz az emberek számára ivóvízként nem használható</td>
</tr>
<tr>
<td>A talajközeli levegő ózontartalma 3 óránként 195 μg/m³ értéket is elér.</td>
<td>A talajközeli levegő ózontartalma az emberi egészség hatáértékét is eléri</td>
</tr>
</tbody>
</table>

I m hosszan egy fél megkülönböztetett szurdok alakult ki. A biotóp védelemre érdemes.

3.2. táblázat Kapcsolat az értékelés és az adatok minősítése között

<table>
<thead>
<tr>
<th>a. Funkciók értékelése</th>
</tr>
</thead>
</table>
csoportjába sorolhatók. Ezeket a funkciókat már közel két évtizede definiálták, azóta használják azokat táj-környezettervezési, védelmi feladatok megoldására (Marks et al. 1992, Mezősi – Rakonczai szerk. 1997, Bastian – Schreiber 1999). Ezen paraméterek (funkciók) meghatározása továbbra is egyszerű maradt (de kvantitatív leírásuk nem minden esetben preciz), számnak némileg bővült (7-ről 11-14-re), és beilleszthetők voltak az általános hierarchia-rendszerbe (3.3 táblázat). Ugyanakkor definiálták (és használnak) más paramétereket is, ezért itt csak a leggyakrabban használtak közül mutatok be néhányat. Ezekre már megfelelő számú elemzés áll rendelkezésre, hogy alkalmazása javasolható legyen.

Csak az ökológiai funkciócsoporthat tekintve (pl. a recreációs funkciót nem) az alábbi főfunkciókat szokás elkülöníteni (Marks et al. 1992):

1. aljazati – ezen belül a talajerózióval szembeni ellenállás, a talaj kiszáradásá és átnedvesedése elleni védelem, a talaj filter- és pufferfunkcióját, mint részfunkciót szokták kiemelni,

2. hidrológiai – ezen belül az új talajvízszint-képződési funkciót, a vízvisszatartási, lefolyás-szabályozási funkciót, öntisztulási funkciót, mint részfunkciót említnek meg,

3. meteorológiai – ezen belül a hőmérséklet kiegyenlítődést, a légnedvesség növelését, mint részfunkciót emelnek ki,

4. biotikus – ezen belül az ökotópképző funkciót, vagy a természetvédelmi/habitát funkciót, mint részfunkciót szokták kiemelni. (A vastag betűkkel kiemelt funkciókat részletesebben bemutatjuk.)

1. A talajerózió hatására bekövetkező termőképesség-romlás Magyarországon jelentős, a mezőgazdasági terület felén-harmadán okoz terméscsoportmentést. A paraméter azt fejezi ki, hogy a termőföld eróziójával szemben milyen (többnyire) természetes ellenállás létezik. A folyamatot a táj adottságok oldalárból két tényező határozza meg: a lejtőn lelfolyó vizek erodálódó képessége, valamint a talaj és domborzati adottságok által meghatározott erózió érzékenység. Ezt a paramétert több modelllél is számítani próbálták. A kísérletek rámutattak arra, hogy a modellekben alkalmazott paraméterek miként szabályozzák az erózió nagyságát. Így pl. különösen érzékeny paraméter a talaj struktúráltartalma, az aggregátumok típusa (azok stabilítása jelentősen csökkenti az eróziót), a lejtőszög, vagy a lejtő hossza. Sok mérési eredmény áll rendelkezésre arról is, hogy a felszínhasználat, az alkalmazott agrotechnika miként hat az erózió mértékére. A sok tapasztalat alapján ma a legálómoddabbodott modell a Wishmeier – Smith (1978) alaposzszefüggésbe létrehozott általános talajveszteségi egyenlet, az USLE, vagy annak számos változata (pl.: MUSLE, RUSLE, EPIC). Az összefüggés (A=RK(SL)CP), ahol R az eső intensitása, K a talaj erodálhatósága, LS a lejtőszög és hossza

2. A talaj természetes tisztítórendszerében a filter- és pufferfunkció részben a csapadékból, a beszívárgó szennyvizekből a szenny- és méregző anyagok egy részét megköti (szűrő), azokat oldott vagy gázhalmazállapotú formában abszorbeálja (puffer), esetleg a talaj anyagaival való reakció révén kémiaillag megköti, és így hosszú időre immobilizálja azokat. Az értékeltetést több funkció-területre szokás széthúzni, és ennek alapján külön elemzik a mechanikai szűrősajátosságokat, a fizikai-kémiai szűrősajátosságokat, vagy a nehézfémekre vonatkozó szűrőképességet (és még más számunkra kevésbé fontos tényezőket is). A funkció becsüléséhez szükséges alapadatok: a talaj mechanikai összetétele, a pH érték és a vízvisszatartási, lefolyás kapacitását. La mechanikai szűrőkapacitás alatt a talajnak azt a képességét értjük, hogy egy szuszpenziót mechanikusan

3. Az ökotópképző funkció a táj teljesítőképességét fejezi ki. A számítás növénytársulások, ökoszisztémák esetén alkalmazható. A koncepciója az, hogy pontszerűen kell minősíteni, összeadni a funkciót leginkább
szabályozó indikátorok értékét. Így az értékelés a ÖÉ=É+T+D+A egyszerű összeggel állítható elő, ahol É – a növénytársulás érettségét, a szukszció sorban elfoglalt helyét jelöli (a klimax társulás 5, a pionír társulás értéke 1 pont), T – természetesség, azaz annak mértéke, hogy a társulás a termőhelyi adottságoknak megfelelő, stabil, zavaró tényezők hatására is jó reagáló képességgel rendelkezik-e (a természeteshez közeli 5 pont, a skála másik végén a mesterséges 0 pont), D – diverzitás a szerkezeti sokféleséget jelenti, és a magas fajszámmal jellemezhető. A magasabb diverzitás általában stabilabb ökorendszert jelent (itt a fajok száma és a szerkezeti sokféleség összege jelzi ezt), A – antropogén hatás, azért is fontos, mert olykor a szukszció sor csak másodlagos, az emberi beavatkozás ezt felülrítheti (a pontozás azt jelzi, hogy mennyire befolyásolt, vagy károsodott a vegetáció).

3.3. táblázat Táji fukciók osztályozása (Bastian – Schreiber 1999 alapján)

<table>
<thead>
<tr>
<th>Funkció csoport</th>
<th>Főfunkció</th>
<th>Részfunkció</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gazdasági funkció</td>
<td>Megújuló erőforrások rendelkezésére állása</td>
<td>Biomassza (pl. szántóföldi növ, tartósan zöldfelület, fa, hal)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Víz (félszíni víz, talajvíz)</td>
</tr>
<tr>
<td>Ökológiai (szabályozó)</td>
<td>Nem megújuló erőforrások rendelkezésére állása</td>
<td>Ásványi nyersanyagok</td>
</tr>
<tr>
<td>funkció</td>
<td></td>
<td>Fosszilis tüzelőanyagok</td>
</tr>
<tr>
<td></td>
<td>Anyag- és energiaháztartás szabályozása</td>
<td>Talajtani funkciók (pl. talajerózió-, talaj kiszáradás elleni védelme, talaj filter és pufferfunkciója)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hidrológiai funkciók (pl. öntisztulási funkció, lefolyásszabályozási funkció, talajvízszint képződési funkció)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Éghajlati funkciók (pl. hőmérséklet kiegyenlítődési funkció, légnedvesség növekedési funkció)</td>
</tr>
<tr>
<td></td>
<td>A biocönózisok és a populáció regenerációs valamint szabályozó funkciói</td>
<td>Biotikus helyreállítódási és szabályozási funkció (pl. habitatfunkció)</td>
</tr>
</tbody>
</table>

Társadalmi funkciók
Pszichológiai funkciók
(Táj)esztétikai, etikai funkciók

Információs funkciók
Tudomány és oktatási funkciók

Humánökológiai funkciók
Pl. bioklimatikus, akusztikus funkciók

Rekreációs funkciók

<table>
<thead>
<tr>
<th>b. Hatásértékelés (más ökotényezőkre vagy gazdasági formákra)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A környezeti (táji keretben lezajló) hatás a tájháztartás teljesítőképességének fenntarthatóságával, ill. annak növelésével kapcsolatos. Ebben a kapcsolatrendszerben értelmezhetünk a hatást okozó, azt kiváltó (pl. környezeti) terhelést, mint pl. az iparosodás, az urbanizáció, a bányászat, vagy más gazdasági tevékenység. Ebbe a csoportba az intenzív mező- és erdőgazdálkodás, vagy a rekreáció is beletartozik. Sajátosan maguk a természeti tényezők maguk a változásukkal lehetnek hatással további más természeti tényezőkre is (pl. a klima változása hatással lehet a vízházatartásra). A kapcsolat másik felében a hatást elszenvedő környezeti tényezők szerepelhetnek (mint pl. a természeti erőforrások, a település, vagy a tájkép).</td>
</tr>
</tbody>
</table>

Ebben a folyamatban bármelyik természeti tényezőt tekinthetjük együtt terhelést is kiváltónak is. Innen indulva a hatásfolyamatról két megközelítésben beszélhetünk. Egyfelől (bármelyik) természeti tényezőnek, ill. változásának más ökológiai tényezőkre irányuló hatását elemezhetjük (a domborzattól a klímán keresztül a vízig). Így pl. ha a domborzat hatását kell vizsgálnunk más ökológiai tényezőre, akkor annak a talajra (pl. a talajfejlődésre, az erózió és akkumuláció viszonyának alakulására figyelhetünk), a klimára (pl. a kitettség, a hegy-völgyi szél, a hideg levegő akkumuláció kérdéseit vizsgálhatjuk), a vízházatartásra (pl. a beszivárgás, a talajfelszíni párolgás), flóra-faunára (természeti táj), társadalomra (pl. rekreációs infrastruktúrára, a kultúrtájra) gyakorolt hatásait vehetjük sorra. |

Másfelől ennek a terhelést kiváltó tényezőnek vizsgálhatjuk a hatását az érintett gazdasági szerkezetre is. Így vizsgálhatjuk (esetünkben a domborzat a kiváltó tényező) hatását az erdőgazdaságra (más geotényezőkön keresztül hat), mezőgazdaságra (pl. talajerőzési, fagyveszély, beérési idő különbsége) a rekreációs potenciáira (pl. a vizuális diverzitás változása), a beépítési potenciáira (pl. hol, mekkora költséget jelenthet a domborzat, biztosítási árák). |

Az 3.5. ábra ugyanennek a kérdéskörnek a másik irányát mutatja, azaz, hogy az egyes gazdasági tevékenységek miként hatnak a természeti környezetre, ill. annak elemeire (ebben a megközelítésben nem az integrált hatást értékeljük). Az ábrán függőlegesen a mezőgazdasági tevékenységek azon tényezői szerepelnek, amelyek, mint kiváltó tényezők befolyást gyakorolnak a vízszintes tengelyen feltüntetett hatást elszenvedő elemekre. Az ábra csak nagyon sematikus értékelést jelez, így az üres kocka azt jelenti, hogy mérhető káros összefüggés nincs, a kis és nagy X jelölés közepes vagy jelentős kapcsolatot mutat.

3.5. ábra - Agrárgazdaság hatása a táj minőségére

<table>
<thead>
<tr>
<th>Talajvíz</th>
<th>Felszíni víz</th>
<th>Talaj</th>
<th>Flóra</th>
<th>Fauna</th>
<th>levegő</th>
<th>Esztétikai érték</th>
</tr>
</thead>
<tbody>
<tr>
<td>műtrágya</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pesztícid</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>virzendezés</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>üszőtőzés</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>állattartás</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>szennyezés</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.5. ábra Agrárgazdaság hatása a táj minőségére
Az ábra arra a kapcsolatrendszerre hívja fel a figyelmet, hogy az elemzésnél elsődleges fontosságú a hatótényezők azonosítása. Ezeket a fenti módon hatásmátrixba szokás rendezni. Ilyen mátrixok pl. a környezeti hatásviszgálatok kívánt elemei is. A tényezők azonosítása azonban nem egyszerű, mert azok (és így folyamataik is) léptékfüggők. A 3.5. ábrán jelölt hatáskapcsolat lokális léptékű. Ez a lépték alkalmas lehet a számszerű kapcsolatok megállapítására is. A 3.6. ábra regionális léptékű összefüggést mutat, és a felszínhasználat különböző típusainak vázolja az egymásra hatást. Az 3.7. fokozatú szkám az erősen elősegítő kapcsolattól az érősen értékvesztőig húzódik (Miklós 1985). Így pl. a (tervszerű) erdőgazdaság jelentősen elősegítheti a rekreációs használatot, ugyanakkor az ipari használat a víz felügyeletén való gazdálkodásnak jelentős értékvesztést okozhat. Ezeknek a kapcsolatoknak a léptéke konkrét védelmi, fenntartási intézkedéseket nem tud generálni.

A hatásértékelésre adott válaszokat a hatásszabályozás fogalmába foglalják össze. Ebben lényegében azokat az intézkedéseket foglaljuk egybe, amelyek egyébként fenntartási, fejlesztési vagy védelmi célból is születnek. Példákképp hozható, hogy a 3.6. ábra alapján a mezőgazdaság tájra gyakorolt hatását úgy mérsékelhetjük, hogy korlátozzuk a növényvédő szer használatát, betiltjuk a biocidok alkalmazását, termésforgót változtassuk, extenzív talajhasznosítást alkalmazunk, más változtatásokat javasoljuk a használati módban, a mezsgye, az erdősáv, a táblamereteket, a kaszálási gyakoriságot változtattuk. A vízgazdálkodásnál ilyen intézkedési csokor lehet a vízkivétel korlátozása (a talajvizet is beleértve), lefolyások késleltetése, középvíz biztosítása, a víz renaturálása, vagy a vízterhelés csökkentése. A turizmus hatásának csökkentésénél pl. fontos szerepet kaphat a hasznosítás korlátozása, látogató irányítással kapcsolatos intézkedések meghozatala is (Riedel 2002).

Sajátos szegmense ennek a csoportnak, amikor azt mérem, hogy a hatás mekkora területet érint, és azt milyen mértékben. Erre a kompenzációs faktor modellt is lehet alkalmazni (Riedel - Lange 2002). Az 3.7. ábra erősen leegyszerűsítve egy tájkép érintettségén érzékeltei ezt a szándékot.

3.7. ábra - A kompenzációs faktor modell (Riedel 2002)
Ezekből sejthető, hogy milyen módszerekkel lehet a hatásértékeléshez kezdeni. A léptéktől is függenek, hogy a szöveges, táblázatos, mátrixos (pl. a nagy léptékeknél) formába rendezzük először adatainkat.

c. A tájak terhelése, terhelhetősége

A terhelés a várt és a valós állapot közötti eltérést jelenti. Egy táj ökológiai terhelése a potenciális tulajdonságok értékesesztésében fejeződik ki, pl. bizonyos célus hasznosíthatóság korlátozásában. Más szavakkal: a környezeti feltételek használata miatt (pl. az éghajlati változások miatt az eső, a felszín magasságának változása) az egyes részletrészek hatását megváltoztatja (az adott hatást megengedi a táj értékelése dolgozásában).

Különbséget kell kenni egy tényező objektíven megállapítható érzékenysége (pl. talaj, víz, levegő), ill. használati igény egyik oldalról és egy subjektíven megállapítható ésszerűsége egy használati korlátán (pl. az adott megvalósítás) a másik oldalról. A terhelés fogalma mindig egy értékeléssel kapcsolódik össze. Németszágban használt nem bonyolult osztályozás szerint (Schernel 1978)

Különbséget kell kenni egy tényező objektíven megállapítható érzékenysége (pl. talaj, víz, levegő), ill. használati igény egyik oldalról és egy subjektíven megállapítható ésszerűsége egy használati korlátán (pl. az adott megvalósítás) a másik oldalról. A terhelés fogalma mindig egy értékeléssel kapcsolódik össze. Németszágban használt nem bonyolult osztályozás szerint (Schernel 1978)

a konkrét használati kategóriáknál (település, mezőgazdaság, közlekedés, ipari és ivóvíz és energiaszolgáltatás természetgi tényezőkkel kapcsolatosan)

ökölógiai terhelés (levegő, víz stb.)
társadalmi-gazdasági terhelés (pszichológia, szociális stb.)
vizsgálat alapján
terhelés az okozótól. Érintett tájémen, korlátozott használat (hatóság?)

A tájökológiában különösen jelentős, mégis nagyon vitatott az ökológiai stabilitás fogalma. Emberi szemszögől akkor mondható egy táj stabilnak, ha a teljesítképessége tartósan biztosíthatónak tűnik, pl. az emberi tevékenység eredménye nem okoz visszafordíthatatlan zavarokat a természeti potenciálakban. A stabilitás fogalma mégis az adott objektum (ökorendszer, táj) szervezettségi szintjétől függ, és a jellegét még további tényezők is szabályozzák. Így az ökológiai stabilitás nagyon általános fogalom lesz a tartósan egy ökorendszer és a képességét, hogy visszatérjen módosíthatja a kiindulási helyzetbe definiálva.

Bármilyen ökorendszer nézék, a stabilitási magatartás nagyon különböző folyamatokon nyugszik, ahol az értékelésnek és a használatnak is különbözőnek kell lennie. E fogalom zavarosa a stabilitásra és a képességére, hogy visszatérjen módosíthatja a kiindulási helyzetbe definiálva. A táj terhelhetőségének fogalma, ill. határa alatt azt értjük, hogy egy táj a környezeti terhelésre úgy reagál, hogy még van lehetőség az állapot fenntartására és regenerációjára (az adott állapotot képes). Itt vannak ehhez kapcsolódó fogalmak pl. rezisztencia, elaszticitás. A stabilitás és a terhelhetőség két lényeges eleme az értékelésnek, amelyek közül az első inkább az objektumokon, a terhelhetőség pedig inkább az elemző értéktételen alapul.

d. Területhasználati interferenciák

Az előző pontban is elemzett környezethasználati típusok eltérően érintik a felszint. Egy felszín használata lehet azonban többszörös célú is, pl. egy erdőgazdasági funkciójú felszínt rekreatív vagy természetvédelmi, vagy épp vízhaszntsági célra is elhelyezhető. Ezek a használatok hatásaikban egymásra rakódhatnak, és az interferencia elemzés célja ezek azonosítása és az összetett hatás értékelése (3.8. ábra). A három évtizedre visszanyúló koncepció néhány országba tudott eredményt elézni (LANMAP – Landscape Ecological Mapping, Miklós 1985). Ma az értékelés leginkább pontosással történik, ami azt becsüli, hogy az egyes használati igények milyen fontosságaik. Ez a módszer nem igazán szerencsés, azt is sejthető, hogy a többszörös
3.8. ábra - Területhasználati interferencia (Bastian – Schreiber 1999 alapján)

A többszörös felszínhasznosítás persze használati és érdekeltségi konfliktusokat is okozhat, aminek néhány környezet- és tájtervezési kérdését az f. pontban vázoljuk.

Ha az egyedi táji elemek ökológiai sajátosságainak a mérése, minősítése (pl. természetesség, diverzitás, érintetlenség) megtörténik, akkor már lehetőség van az objektum alkalmasság-értékelésére, azaz milyen célra, milyen korlátokkal használható fel az adott elem. Ehhez a relatív összeméréshez az ökológiai sajátosságok feltart értékeit és az ért hatások, terheléseket mértékét kell ismerni. Ez gyakorlati szempontból az alkalmasság megállapítását, elméletileg a táj teljesítőképességének meghatározását állíthatja elő. Ez az ökológia szempontú terheléselemzés a mintázattal lehet kapcsolatban (amit a 4. fejezet tárgyal).

3.8. ábra Területhasználati interferencia (Bastian – Schreiber 1999 alapján)

A kockázatelemzés folyamata az alábbi lépések mentén foglalható össze:
1. A természeti tényezők teljesítményét (indikátorokon keresztül) értékeljük. Számba vesszük a potenciális hasznosításokat, amelyek káros hatással lehetnek a természeti tényezőkre. Ezek alapján konfliktuskört szerkeszthetünk.

2. Az egyes elemekekre elvégzett eredményeket aggregáljuk, és meghatározzuk a károkozással szembeni érzékenységet (mint pl. KHÉ-ben).

3. Meghatározzuk és területileg értékeljük a természeti erőforrásokat ért potenciális károk intenzitását.

4. Az aggregált érzékenység és intenzitás alapján kiszámolhatjuk a károkozás kockázatát.

A kockázatot a gyakorlatban egyik oldalról nagyon egyszerűen közelítik meg. Annak értékeit egyszerű hármás tagolású mátrix jellegű táblázatba foglalják (3.4. táblázat). Ha pl. az objektum értékes sebessége nagy és annak védelmére érdemes értéke magas, akkor a kockázat erős. Másik oldalról, ha alacsony az értékesítésére és a rendszerbe felvételére értéke volt, akkor a kockázat kicsi.

3.4. táblázat: A kockázat semantikus értékelése (Riedel – Lange 2002)

<table>
<thead>
<tr>
<th>A értékesítés mértéke</th>
<th>Védelemre érdemes érték</th>
</tr>
</thead>
<tbody>
<tr>
<td>+++ (nagy)</td>
<td>+++(értékes)</td>
</tr>
<tr>
<td>+ (közepes)</td>
<td>+(kevésbé értékes)</td>
</tr>
<tr>
<td>++ (közepes)</td>
<td>!!! – magas kockázat</td>
</tr>
<tr>
<td>+ alacsony</td>
<td>!! - közepes kockázat</td>
</tr>
</tbody>
</table>

A kockázat számítására (becslésére) igen elterjed módosz e modell alkalmazása. Ezeket a korábban jelzett összefüggés alapján számítják, azaz a veszély és annak előfordulási gyakoriságát/mértékét jelző paraméterek sorozatából eredeztetik az értéket. A következőben egy ilyen példát mutatunk be, ahol a szerzőknek a célja egy vízgyűjtő szintű környezeti kockázatmenedzsment módszertan kialakítása volt. Ez a modell a szennyezőanyagok felszíni vízre ható kockázatára összpontosított (Gruiz et al. 2005, 3.9.ábra). (Utalva a fentiekre: az itt használt kockázat fogalma nem illeszkedik az általunk használtal.) Ez hasznos elvi alapja lehet egy környezeti veszélyértékelési modellnek. Számos talajtanban, vízrajzban használatos kockázatbecslési modell ismert, amelyek jellemzően az emberi egészségkárosodás alapján határozzák meg a kockázat mértékét.

A kockázat számítására (becslésére) igen elterjed módszer e modell alkalmazása. Ezeket a korábban jelzett összefüggés alapján számítják, azaz a veszély és annak előfordulási gyakoriságát/mértékét jelző paraméterek sorozatából eredeztetik az értéket. A következőben egy ilyen példát mutatunk be, ahol a szerzőknek a célja egy vízgyűjtő szintű környezeti kockázatmenedzsment módszertan kialakítása volt. Ez a modell a szennyezőanyagok felszíni vízre ható kockázatára összpontosított (Gruiz et al. 2005, 3.9.ábra). (Utalva a fentiekre: az itt használt kockázat fogalma nem illeszkedik az általunk használtal.) Ez hasznos elvi alapja lehet egy környezeti veszélyértékelési modellnek. Számos talajtanban, vízrajzban használatos kockázatbecslési modell ismert, amelyek jellemzően az emberi egészségkárosodás alapján határozzák meg a kockázat mértékét.

A kockázat számítására (becslésére) igen elterjed módszer e modell alkalmazása. Ezeket a korábban jelzett összefüggés alapján számítják, azaz a veszély és annak előfordulási gyakoriságát/mértékét jelző paraméterek sorozatából eredeztetik az értéket. A következőben egy ilyen példát mutatunk be, ahol a szerzőknek a célja egy vízgyűjtő szintű környezeti kockázatmenedzsment módszertan kialakítása volt. Ez a modell a szennyezőanyagok felszíni vízre ható kockázatára összpontosított (Gruiz et al. 2005, 3.9.ábra). (Utalva a fentiekre: az itt használt kockázat fogalma nem illeszkedik az általunk használtal.) Ez hasznos elvi alapja lehet egy környezeti veszélyértékelési modellnek. Számos talajtanban, vízrajzban használatos kockázatbecslési modell ismert, amelyek jellemzően az emberi egészségkárosodás alapján határozzák meg a kockázat mértékét.

3.9. ábra - A Toka vízgyűjtő integrált kockázati modellje (Gruiz et al. 2005)
3.9. ábra A Toka vízgyűjtő integrált kockázati modellje (Gruiz et al. 2005)

A kockázatok igényes vizsgálatához korszerű módszerek és technikák állnak rendelkezésre, de az ehhez szükséges szemlélet kialakításában a fenti elvek is segíthetnek. A különféle alkalmazási területekre kiterjedt kockázatelemző módszerek többfajta technikát is használhatnak (pl. fuzzy elemzés – a bekövetkezési valószínűségek és súlyosságok kategóriainak fuzzy értelmezés alapján, vagy Monte Carlo szimuláció – a becsülések valószínűségi elemzési technikával történő átvitele, és az elemzést akkor segíti, amikor nem ismert egy esemény bekövetkezésének a valószínűsége.). A számos kockázatkezelő modell közül a talán a legmagasabbra n használt a @Risk 5.0 (Palisade által gyártott) szoftver. Előnye, hogy a kliens gépeken futó eszközökkel (MS Excel, MS Project) együtt használhatók. Többszintű (standard, professional) és sokoldalú szoftvertermék-csomag. A szoftveren belül a „Standard” rész a legegyszerűbb és legalapvetőbb kockázatelemző módszereket tartalmazza (ez pl. Monte Carlo szimulációt használ). A „Precision” Tree 5.0 típusú szoftver része a döntési-fák módszerét, a „Project” rész pedig a projektkockázatok (határidoceuszsáz, költségövékedés) elemzését támogatja.

A magyar kockázatelemző módszerek közül az egyik legismertebb az IntegRISK® rendszer (Integrált Kockázatmenedzsment Rendszer), amely rendszertervezően támogatja a kockázatelemzés és -kezelés folyamatát. A stratégiai-tervezés, operatív-tervezés, valamint a működési kockázatelemzés moduljai hatékonyan segítség a kockázatkezelést a stratégiai szervezeti célok eléréseben. Tekenhető ez egyfajta – a törvényi megfelelőséget igazoló – auditálási segédeszköz (Véry 2008).

Összességében az mondható, hogy sok megoldás ismeretlen, amely segít pl. a szennyezett területek környezeti kockázatának jellemzésében, a kockázatos anyag és az érintett terület adottságain alapuló terjedései térképezésében, de lényegében azt azt kell világossá és (lehetőleg modellbe foglalhatóvá) tenni, hogy a környezetterhelés miként változtatja meg mennyiségileg és minőséggel a természeti erőforrásokat (ok-folyamat) – és a kockázatelemzés és a mennyiségileg és minőséggel megváltozott erőforrások mennyire korlátozzák a használati lehetőségeket.

A kockázatelemzés számos alkalmazási területen használt. Az a (szemlélet) változásra szándék figyelhető meg, hogy a felismert problémákat nem elsősorban az ajánlott vagy elvárt keret-, szabványrendszerhez való megfelelőlés kísérlik megoldani (ez gyakran kötelező persze), hanem jóval több figyelmet kap a hatóanyagok integrált kezelése, és a stratégia ennek alapján történő továbbvitele. Erre a szándéka jó példa az ISO 31000 Risk Management szabvány.

Az EU-ban kockázati modellek fogalmát is már igen tágan értelmezik, pl. a határrendezékek Frontex modellje, vagy a banki szféra Calemrisk modellje mutat erre példát. A banki szféra egy javaslatra szerint a kockázatot érték (value at risk, általánosan használt rövidítéssel VaR) fogadható el a kockázat mérőszámának. A '80-as évek óta az egyik leggyakoribb mértéke a kockázatnak.

f. Konfliktusértékelés

A környezeti funkciók, eltérő hatások, terhelések, a többszörös használattal összefüggő interferenciák az értékelésnél, ill. annak eredményénél (pl. területi tervezésnél) olykor használt vagy érdekeltségi konfliktusokban jelenhetnek meg. Erre a jellemzően társadalmi indítatású megközelítésre külön, elfogadott számítási módszer nem ismert. Maga a probléma az előzőekből ismert: egy-egy társadalmi tevékenység a környezeti erőforrásokat használja, ennek környezeti következményei vannak, a használatok és a következmények is egymásra rakódnak, ami használati konfliktust gerjeszthet (3.10. ábra). Hasonló módon értelmezhető az érdekeltségi konfliktus is. Az környezeti érdek vagy értékkonfliktusoknál a legcelérvételőbb a problémamegoldó konfliktus kezelés alkalmazása.

3.10. ábra A táji komponensek antropogén terhelése (Miklós 1988)

<table>
<thead>
<tr>
<th>Konfliktusokozó</th>
<th>Lehetséges kimenet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrárcélból használt felszin</td>
<td>erózió, talajszerek változása, talaj igénybe vétele antropogén célra, imisszió</td>
</tr>
<tr>
<td>Vízi erőforrás</td>
<td>a vízrendszer és az öntisztulás megváltozása</td>
</tr>
<tr>
<td></td>
<td>közvetlen anyagbehordódád</td>
</tr>
<tr>
<td></td>
<td>káros anyag kontamináció</td>
</tr>
<tr>
<td>Erdészeti erőforrás</td>
<td>ökológiailag instabil monokultúra kiépítése</td>
</tr>
<tr>
<td></td>
<td>káros anyag imisszió</td>
</tr>
<tr>
<td></td>
<td>imisszió</td>
</tr>
<tr>
<td>Népesség élőhelyei, település, rekreációs területek</td>
<td>imisszió, zaj, szennyvíz, esztétikai problémák</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Természetvédelmi területek</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Felhasznált irodalom

4. fejezet - A tájtervezés földrajzi alapjai (Csorba P.)

A táj azon kevés geográfiai fogalom, amelynek földrajzi jellegét aligha lehet vitatni. A fogalom pontos meghatározását illető vita ellenére soha nem lehetett megkérdőjelezni, hogy a táj alapvetően földrajzi képződmény, amelynek működését, megjelenését elsősorban a geográfusok vizsgálják, kutatása elsősorban földrajzi téma, feladat.

Ezzel szemben, amint megvizsgáljuk különféle tájas szóösszetételekkel kifejezett speciális szakterületek tevékenységét;

tájökológia,
tájtervezés,
tájrendezés,
tájrehabilitáció,
tájrekonstrukció,
tájesztétika,
tájvédelem stb.

eyértelmű, hogy a földrajzi megközelítés, a hagyományos földrajzi ismeretek alkalmazása többé-kevésbé mellőzhető. Kis túlzással, a minden tájás szakmunka számára nélkülözhetetlen, közékezen forgó kistájakaszter kivételével úgy látszik nincs nagy szükség a földrajz, közelebbről még a tájföldrajz által kínált ismeretekre sem.

Ezen a táj és környezetföldrajz számára lehangoló helyzetén kívánunk változtatni, azzal a meggyőződéssel, hogy a fenti speciális ökológiai, mérnöki, esztétikai ismereteket kívánó munkában nem megkérdőjelezi akarjuk az ökológus vagy a tájépítész kompetenciáját a tájás munkaterületen, viszont határozottan állítjuk, hogy az ilyen munkák, kutatások több szakma együttműködését kívánják, amiben helye van a geográfának is.

Ennek a könyvnek a szerzői, mint egyetemi oktatók, elsősorban a földrajz szakos hallgatók oktatásán keresztül törekznek szüksége eszközökének és szakmai munkájuk számára kedvezőbb munkaerő-piaci pozíciót elérni. Nagy mértékben a mi feladatunk és feladatunk, hogy az ország egyetemeként kikerülő földrajz szakos hallgatók szakmailag felkészülten bekapcsolódhasnak a tájtervezési, tájrendezési, tájvédelmi munkákba.

1. A tájtervezés fogalma és célja

A tájtervezés történeti gyökerei messzire nyúlnak, idézhetők akár az ókori várostervezéssel kapcsolatos adatok, de tényleges tájtervezésről – nem felelve, pl. a skót Lourdon J.C. (1783-1843) tájkertjeinek (“landscape gardener”), vagy az amerikai parktervezésben ütőtorz szerepet játszó Olmsted F.L. (1822-1903) jelentőségét – lényegében az 1930-as évektől kezdve beszélhetünk. 1934-ben Abercrombie P. egyetemi előadásainak Vidéktervezés és tájalakítás (Country planning and landscape design) címét adta, de még évadokkal teltek el, mire az 1960-as években megjelentek az első tájtervezéssel foglalkozó könyvek.

Magyarországon a tájtervezés a szakterület külföldi differenciálódásához hasonlóan a kertépítészet, majd a tájépítészet részeként Ormos Imre (1903-1979) il. Mocsányi Mihály (1919-) tevékenysége nyomán kapott hivatalos keretet. A Kertészeti Akadémián, il. Kertészeti és Szülészeti Főiskolán (1968-tól egyetemen), nálunk is az 1940-es évekkel kezdődően alakult ki az a szakmai műhely, amely az agrár- és települési környezet tervezésének mérnöki oldalát a táj megkövetelte szélesseb keretbe helyezte, és ezzel elindította a valódi tájtervezési képzést, kutatást, gyakorlatot.
A környezet állapotának változtatását, a környezeti viszonyok megtervezését hosszú ideig kizárólag a városokra értették, úgy véltek, hogy a rurális területeken folyó élet és környezethasználat alapvetően összhangban van a termesztettel, itt nincs szükség tervezői beavatkozásra. Ebben van is valami igazság, hiszen valóban az ipari forradalom idején átalakult, lakosságszámukban hirtelen felvidult, ezáltal sok helyen elviselhetetlenül szűlt és szennyeződött városokban kialakult viszonyok kényszerítették ki a várostervezést (urban planning). A rurális tágak kisebb működési zavarait egészen a XX. század elejéig össze is lehetett hasonlítani a nagyvárosokat, a városi agglomerációkat sújtó környezetterhelés mértékével.

A vidéki térségek környezetterhelése, a degradálódás, az elhanyagoltság miatti leromlás a legfejlettebb országokban csak a két világháború között, és legalábbis Európában átalannosságban az 1960-as években érte el azt a critikus szintet, amely a vidéki területek tajtervezésért kiáltott. Az intenzív mezőgazdaság talaj- és vízkészlet terhelő hatása, a talajú értékek kéntelenül csökkenésével, a felhagyott területek ugrászerű növekedésével teremtett olyan helyzetet, amikor össztársadalmi igény mutatkozott a vidéki térségek tájainak tudatos alakítására, tervezésére.

Témánk szempontjából figyelemre méltó az a fejlődési út, amit a brit tajtervezés bejárt (Jensen, L.H. 2006). A szigetország tájainak évszázadok óta egymásra rakódó kultúrtörténete miatt itt hosszú, de elkülönült hagyománya van a táj (landscape) és a természet (wildlife) megőrzésnek. Ennek következtében 1949-ben, amikor kiadták a Nemzeti Parkokról és Vidékfejlesztésről szóló törvényt (National Parks and Access to the Countryside Act) a rendeletben foglaltak megvalósítására két, egymástól független szervezet alakult meg. A Nemzeti Parkok Bizottságának jogköré és feladata lett az ökológiai és geológiai tájvédelem, a Vidékfejlesztési Bizottság viszont a rurális területek látványának megőrzéséért felelt. A két irányító szervezet szemléleti különbsége kiéleződött az 1960-as évek végén, amikor komoly szakmai vita kezdődött a nemzeti parkokra nehezedő rekreációs nyomás csökkenése érdekében. A vita nyomán az eltérő tájértelmezés, ill. felfogás lassan közlekedett egymáshoz, mind több szakvélemény jelent meg arról, hogy a tájpotenciál, a földhasználat, a klima, a hidrológiai rezsim, az éghajlat, az emberiségi és földrajzi állományok változását, a táj menedzsmentjét, az éghajlatváltozás hatását és az emberi jogbrukási hatásait is figyelembe vétele és mérésével értelmezték. Éppen az eredeti tájpotenciál és a környezettörvényeknek a megfelelő beavatkozásával a táj környezetének megőrzésében a legfontosabb lépés volt a tájtervezés.

A tájtervezést a szerzők többsége a tájépítészeten belül úgy különít el, hogy a tájtervezést a tájépítész egyéb szakmai megújulásból fejlődött ki az 1990-es évek közepén, amikor az ökológiai és geológiai tájvédelem létfonóval szemben, az ipari és a kapitalista tájászati megközelítés iránti konfliktusok feloldását és az ökológiai és gazdasági értékek azonosítását célozta meg. Az Európai Táj Egyezmény (European Landscape Convention; Firenze, 2000 október) a tájtervezést a személyes értékek és a táj potenciálának megőrzéséért kettő céljára alakította ki. Ez az egyben a táj felhagyása, a táj felújítása és megőrzése, valamint a tájfelhasználások ellenállása terén azonosítottak, amelyek a tájtervezést és a táj hatékonyságát és ökológiai stabilitását fenyegetik.

A tájtervezés célja valósítja meg a táj felületén belül és körülötte lakók és látogatók érdekeit, azokat az értékeket, amelyek az ökológiai és gazdasági értékek megőrzésére és fenntartható tájkezelésére szolgálnak.

A tájtervezés célja a tájok területi szerveződésének befolyásolása, a tájhasználati konfliktusok, a különféle társadalmi igények, értékek között kialakult feszültségek feloldása (Antrop, M. 2006).

Az Európai Táj Egyezmény (European Landscape Convention; Firenze, 2000 október) a tájtervezést egy olyan gyakorlati megközelítésnek tekinti, amely során a táj működését és megjelenését javítjuk, megőrizzük, szükség esetén visszaalakítjuk egy korábbi állapotba.

Egy meg korszerűbb kifejezéseket felsorakoztató megfogalmazás szerint pedig a tájtervezést célja a táji adottságok ésszerű kihasználása, a fenntartható tájhasználat és a táj ökológiai létét károsító lépések korlátozása, kiiktatása (Tress, G. et al 2006).

Optimalis esetben a tájtervezés olyan beavatkozás a táj működésébe és megjelenésébe, amely során

22

Created by XMLmind XSL-FO Converter.
• a tájháztartás nem károsodik,
• lehetővé teszi a táj többszörös hasznosítását,
• racionális terület-hasznosítás és táji szemlélet érvényesül,
• az építmények, létesítmények alkalmazkodnak a táj karakteréhez,
• összességében fokozza, megörzi a táj értékeit és potenciálját.

(info@KertIkon.hu, 2009)

2. A tájtervezés helye a rokon szakterületek között

A fentebb felsorolt, ún. tájas szakterületek között kétségtelenül a tájtervezés áll a képzeletbeli hierarchia élén, ez az a munkaterület, amelynek meg van a társadalmi elfogadottsága, és jelentkezik a gyakorlati igény is a tájtervezés munkákra. Ez az igény kétségtelenül nem éri el pl. a közműtervező vagy az általános építészmérnöki munka presztízsét, de az utóbbi évtizedekben tagadhatatlanul hazánkban is növekvő szükségletet elégit ki.

Ennek fényében is meglepő, hogy az Akadémiai Kiadó által 2002-ben kiadott kétkötetes Környezet- és természetvédelmi lexikonban nincs külön tájtervezés című, miközben megtaláljuk a fent említett összes többi tájhaszterület magyarázatát, a tájolókialapítástól a tájvédelemig. Ennek oka, hogy a tájtervezés egy kevésbé tudományos jellegű, kifejezetten gyakorlati munkafolyamat, aminek konkrét célja lehet ökológiai, rehabilitációs, vagy esztétikai tájalakítás. Helyenként fel is bukkan a szakirodalomban olyan pontosító kifejezés, hogy „ökológiai tájtervezés” vagy „esztétikai tájtervezés”.

A tájas szakterületek Csima P. (2008) szerint az alábbiak szerint kapcsolódnak össze:

A tájrendezés része

a tájfejlesztés,
a a tájvédelem

A tájfejlesztés esetében egy eredetileg nem meglévő tájpotenciál megteremtése, kialakítása a cél, a tájvédelem a meglévő adottságok megőrzését, a tájrehabilitáció és a tájrekonstrukció egy leromlott, ill. már el is eltűnt potenciál visszahozását jelenti.

Az előbbiek től jobban elkülönülő szakterület:

a tájolókológia és

a tájesztétika.

A tájtervezés pedig a tájrendezés egyik eszköze, „egyrészt a települési és a térségi rendezési tervek esetében a tájrendezési döntések szakmai előkészítésével, másrészt eszköz a tájépítési kivitelezési tervek megvalósításához.” (Csima 2008).

A 4.1. ábrán tudományos szempontból az általános tájvédelmet helyeztük a hierarchia tetejére, amelynek elméleti hátterét jelentős mértéken a tájolókológia és a tájesztétika biztosítja. A tájtervezés képviseli a tájvédelem társadalom által megkívánt igényének a megvalósítását, amelyre az adott táj állapotának megfelelően rekonstrukciós, védelmi, vagy rehabilitációs célú rendezési terv készülhet. Mivel a rekonstrukció egy korábbi, már alig működőképes állapot visszahozását célozza, az ilyen beavatkozás során van szükség leginkább a tudományos, elméleti tájolókológiai ismeretekre, ezért tettünk a tájrekonstrukciót legközelebb a tájolókológiahoz. A tájrehabilitáció ezzel szemben inkább technikai korrekciós beavatkozásokat kíván, ennek több kapcsolata van a mérnöki tervezéssel.

4.1. ábra - A tájtervezés és más tájkezelési szakterület kapcsolata
A tájtervezés nemzetközi szakirodalmát tanulmányozva megállapítható, hogy a feladat több szakterület részvételét kívánó, interdisciplináris jellege külföldön már jobban utat tört magának. Az 1990-es években új alapokra helyezkedő holland, német, angol, dán tájtervezés a korábbinál sokkal erőteljesebben támaszkodik az ökológiai és a geográfiai alapokra. Kétségtelen, hogy az említett országokban a tájhasználat intenzitása, az ember általi átalakítottsága magasabb fokot ért el, mint Európa keleti, északabbra fekvő tájain, de az is tény, hogy a tájökológus, a tájföldrajzos tudása természetesebb módon beépül a tervezői munkafolyamatba.

A hatékonyság növelése érdekében persze ezekben a példaként említett országokban is folyamatosan tenni kell az egyetemi oktatás terén is. Nem véletlen, hogy a képzés minőségéért felelősséget érző vezető oktatók intenzív mesterkurzusokra gyűjlik maguk köré az alapképzettséggel már rendelkező egyetemi hallgatókat (Tress B. et al. 2006). A szervezők nem titkolott célja, hogy a tájtervezés tudományok közötti jellegét ezzel egy magasabb, ún. transzdisciplináris, azaz rokontudományok feletti, új minőségi szintre emeljék.

Ezeken a mesterkurzusokon kifejezetten arra törekznek, hogy hangsúlyozzák a téma összetettségét, a táj sokarcúságát, a tájtervezés különlegesen összetett szempontok kívánó mivoltát. Ennek érdekében igyekeznek úgy az oktatók, mint a hallgatók szakmai hátterét a lehető legszélesebbre szabni; legyen közük ökológus, földrajzos, mezőgazdász, erdész, építész, jogász, szociológus, filozófus, régész, biológus, pszichológus stb. Természetes követelmény, hogy az oktatók ne csak az akadémiai szférából kerüljenek ki, hanem legyenek a tájtervezés gyakorlatában résztvevő tervezők és a tervezés adminisztrációjában szereplő hivatalok képviselői is.

A hatékonyság növelése érdekében persze ezekben a példaként említett országokban is folyamatosan tenni kell az egyetemi oktatás terén is. Nem véletlen, hogy a képzés minőségéért felelősséget érző vezető oktatók intenzív

A fenti megállapításokat még inkább megerősíti az a tény, hogy a táj ma már a fejlett országokban sehol sem kizárólag a mezőgazdasági tevékenység színtere. Jóllehet a területrendezés arányait tekintve (extrém természeti adottságú területeket kivéve) a mező- és erdőgazdálkodás továbbra is uralkodó szerepet játszik, tájtervezési szempontból mégis a többcélú ún. multifunkciós földhasználat jellemző (Brandt, J. – Vejre, H. 2004). Ma már Európa, É-Amerika nagy részén a tervezéskor az infrastrukturális, a természetvédelmi és a rekreációs céloknak legalább olyan, sőt néha nagyobb szerepe van a földhasználatban, mint a hagyományos primer termelő tevékenységeknek. Gyakran megesik, hogy a mégoly jó minőségű földeket is inkább szennyvíztisztító telep, mint szántóföld foglal el, egy bevásárló központ miatt eltünik egy nedves élőhely stb.

A tájtervezés másik kritikus pontja, hogy a társadalmi igények folyamatosan változnak, s ami ma még általános támogatottságot élvez, korántsem biztos, hogy megegyezik a közeljövő prioritásaival. Ezért általános
tájtervezés alapelvként kellene működnie annak, hogy a természettes táji folyamatokba csak a visszafordíthatóság mértékéig kellene beavatkozni (Kerényi A. 2007). Ez a kívánság sok esetben illúzió. Tény, hogy mai cselekedeteink következményei messzebb nyúlnak, mint amennyire képesek vagyunk előre látni a jövőbeli táji folyamatokat.

3. A tájtervezés szükségessége, avagy válságban vannak-e az európai tájak?

Állításukat azzal igyekeznek bizonyítani, hogy Európa legmagasabb társadalmi színvonalon élő országaiiban a tájakat csökkenő változatosság (tájdiverzitás), tehát növekvő homogenitás („táji macdonalizáció”) jellemzi (4.2. ábra), markánsan megjelent egy erős tájhasználati polarizáció; azaz igen intenzív használatú tájak, tájrészletek mellett/között felhagyott, védett természetközeli föltok vannak, sorra alakítunk ki olyan tájhasználati modellek, amelyeknek nincs kötődése az ökológiai nagyszerkezetnek, és a tájfejlődés sok helyen ma nem konzervatif fotát a korábbi évszázadok fejlődésének, töbnyire radikális szakítás zajlik a történelmi gyökerekkel. Inkább fölülírják, mintsem belenőnek a korábbi tájhasználati mód és a tájfejlődés lehetőségei közötti szakítás dokumentálható (Antrop, M. 2005).

4.2. ábra - Európában szinte mindenütt megnőttek a mezőgazdasági parcellaméretek, csökkent a táji változatosság (Ausztria, Zillertal)

Másrészt az is igaz, hogy az utóbbi néhány év alatt az ökoszisztémák változását, az ugyanis az emberi és társadalmi hatásokat követő változásokat a tájtervezés terén és az európai tájokban a korábbi, mezőgazdasági és természeti szempontokkal való megértés kockáznak az emberek számára, tehát nem képesek megfelelően értelmezni és kezelni az országos tájfejlődés iránti erők és kérdéseket. Ez a gondolat az alapja annak az Európai Unió kompenzációs mechanizmusának, amely anyagilag támogatja a termőföld környezetkímélő használatát, annak érdekében,
hogy a kisebb intenzitású bolygatás és vegyszerhasználat fejében megőriződjön a közösség számára egyre fontosabb, „közjóság”-ként nyilvántartott kedvező környezetminőség; felszíni és felszín alatti vizek, gyommentes vegetáció, szennyezetlen, erőzöimentes talaj stb.

Antrop szerint az első komoly visszhangot kiváltó figyelmeztetést, hogy ti. valami baj van az európai tájak egészségi állapotával – a Dobriš jelentésében lehetett olvasni (Stanners, D. – Bourdeau, P. 1995). Azóta szinte minden tájas konferencián visszatérően kiemelt téma a
tájvédelzis,
a multifunkcionális tájhasználat és
a tájkarakter kérdése.

A tudományos figyelmelelhívás ezuttal elérte a politikusok ingerküszöbét is, 2000-ben megszületett, és kellő számú tagország csatlakozásával 2004-ben életbe is lépette az Európai Táj Egyezmény (Magyarországon a 2007. évi CIV. törvény parlamenti megszavazása zárta le a csatlakozási folyamatot.)

Antrop pesszimista álláspontjával azonban két szempontból is vitába szállhatunk. Egyrészt az utóbbi 10 évben különösen Európában – de Ázsiában, Dél- és Közép-Amerikában is, – elemi erővel jelentkezett az igény az ún. nemzeti tájak megőrzésére. Úgy is fogalmazhatunk, hogy a tájmegőrzés, a tájakhoz fűződő egyéni-, csoport-, és nemzeti identitáson keresztül a globalizáció elleni harc egyik színterévé vált (Csorba P. 2010).

Európára – a kontinens keleti, sikási tájainak kivételével – rendkívül mozaikos természeti adottságai révén igen magas táj változatosság (tájdiverzitás) jellemző. Emiatt a kontinens lakói nagyon sokféle tájhoz és tájtípushoz kötődnek. A nagyobb területű országokban nem is könnyű társadalmi konszenzusra jutni, hogy melyik az „igazi” nemzeti táj. Úgy tűnik, ahol a tájdiverzitás kisebb, vagy az ország mérete miatt a választék szegényebben, ott ez a közmegegyezés könnyebben körvonalazódik, Pl. a valódi svéd, lengyel, orosz táj mibenlétéről kisebb vita alakult ki, mint az angol, a francia, vagy a spanyol tájak esetében.

A közvélemény által elfogadott nemzeti tájak közös vonása a látvány attraktivitása mellett, hogy erősen kapcsolódik a nemzeti történelmelemből versenyezett helybe, egy-egy jelentős személyiség életének szintereihez. Az igazi nemzeti táj legtöbb esetben a tartósan birtokos magterület – a svédek Dalarna, a németek a Rajna-vidék, az olaszok Toscana. Sok nemzeti esetében a legősibb hitvilág néhány elemeinként, mágikus, szent helyek kiemelt szerepe is megmaradt. A szlovákok számára, pl. „nemzeti hegy” a Kriván, a Sítno, a csehek hite szerint pedig a Blaníkon rejnzők azok a harcosok, akik ha bajban van a nemzet, segítenek... A német hiedelemvilágában a Harz legmagasabb csúcsa, a Brocken úgy ismert, mint a boszorkányok legfőbb találkozóhelye.

A tipikusnak tartott nemzeti tájaknak van néhány közös vonása.

Mozaikos növényfedettség, amelynek többsége lehet kultúrnövényzet is, de ne legyen nagyterületű, láthatóan telepített erdő, ültetvény, talán még teraszosodott szőlő sem, az élénk, leginkább középhegységi domborzat,
előnyös a nyílt vízfelület,
a tradicionális (kisparcellás) mezőgazdasági tájhasználat,
a látómező 15-20 %-át elfoglalva viszonylag alacsony szintű antropogén jelenlét, belakottság, történelmi hangulatot árasztó épületek; várak, kastélyok, kertek, kikötők, utményi fásorok.

A kedvezőnek ítélt tájfelépítő elemek között tehet vannak természetes, félő-természetes és mesterséges elemei. Ezek aránya, elrendeződésének mintázata, színhata összességében eredményezhet kielégítően előnyös táji megjelenést.

A természette tájalkotó tényezők között
a domborzat jellege,
a természettízi növényzet,
a vízfelület,
a tájfoltok közötti érintkezési felületek, az ún. szegélyhatás és
a föltmátrázat játszik döntő szerepet.

A féltermészeti elemek, azaz az agroökoszisztémák és telepített erdők esetében a mezőgazdasági parcellák mérete, formája, tagoltsága, kontúrai, a lejtős területeken a parcellák iránya eredményez egyedi tájkaraktert.

Fontos „tájöltöztető” elem a növényzet színe; gondoljunk csak a manapság a tavaszi hónapokban markáns tájmeghatározó erővel rendelkező repceföldek sárga négyzeteire. Kifejezetten erős kultúrtájformáló hatása van a szőlő- és gyümölcs településvéknek, a mediterráneumban az olajfaligeteknek, a jellegzetes alakú mandulafenyőknek, európai ciprusoknak, de határozott regionális különbségi vannak, pl. a szénaboglyák formáinak is (4.3. ábra).

4.3. ábra - Tájképi jelleget meghatározó szénaboglyák Biharrósa (Roșia/Románia) határában

A mesterséges tájképformáló objektumok esetében fontos a települések által elfoglalt hely exponáltsága – pl. hogy a település dombségében vagy kisebb hegytetőkön, folyópartokon van-e. Egy igazi szép tájban meghúzódó településből egy templom és ne hűvössé válna a külterületi tájba, toronyházak, lakótelepek ne nyomják el a történelmi településmag sziluettjét. Némely táj egyedi varázslatos nevekkel fokozza egy-egy messziről is kivehető építettépsége – pl. középkori várkastély, bástyák, kálváriaombok kápolnái, gémekút, présházak, stb. Tájkarakter alakító ereje lehet a házak formájának, pl. magas alpei tetőzetnek, a nádfedésnek, vagy „fehérfalú, pirostetős igazi magyart” tanyapéntieknek. Messziről – egy tájat átfogó nézőpontból is jól kivehető a mediterrán házkockák vakitó fehérsége (4.4. ábra), az árnyas szűk utcáhozozat, tájképinek is érzékelhető angol települések parkokkal, zöld gyepekkel tagolt megjelenése, a kikötők molók tagolta vizének hullámzása.

4.4. ábra - Alcoutim portugál-spanyol határváros a Guadiana partján.
4. Példák a megőrzendő nemzeti tájakról

Joggal gondolná az ember, hogy Európa egyik legritkábban lakott országában, **Norvégiaban** nincs ok félni az igazi norvég táj eltüntésétől. Ezzel szemben a norvég tájvédelem aktivitása igen nagy, elsőként csatlakoztak pl. az Európai Táj Egyezményhez is. Késéségtelen, hogy 1975, a hatalmas olaj- és földgázkincs kiaknázásának megkezdése óta végbemenyt gyors gazdasági fejlődés következtében veszélybe került az igazi norvég táj is (Frislid, R. 1990). A norvég tájvédelem határozott korlátozást vár a rendkívül keskeny tengerparton kiépült olaj- és gázfogadó telepek, energiaigényes iparágak földfoglalása ellen. Az 1977-től meghirdetett vidékmentő (Countryside) program számos elnéptelenedő falu számára nyújt anyagi segítséget a vidék népességmegtartási erejének növeléséhez (4.5. ábra). A vidéken maradás kulcskérdése még Norvégiaiban is a mezőgazdaság, a tradicionális falombgyűjtéssel kiegészített legeltető állattartás, amely megakadályozta a boróka terjedését, olyan másodlagos bozótos növényzet kialakulását, amelyet még a kirándulók is elkerülnek. Harmics év tapasztalata alapján látható, hogy a termékek rendszeres elszállítása, azaz jó infrastruktúra kiépítése nélkül reménytelen az ilyen törekvés. A magashegységi függelék, ill. a messzi északi kultúrája megőrzése csak csakély sikert könyvelhet el. A meglepően közép-európai típusú tájgazdálkodással bíró oslói medencében a Grudbransdal-völgyben a földművelés és a vegyes lomberdők mozaijának meg tartása érdekeben a tájvédőknek a vizerőmű lobbival, a lucfenyőt preferáló erdészettel és a tömegturizmusmal (ld. Lillehammer) kell megküzdeni. A jellegzetes norvég vidéki építési stílus, a faépítés fenntartása ugyancsak nélkülözhetetlen a tájképvédelem számára.

4.5. ábra - Hagyományos településkép és földhasználat Ny-Norvégiaban (Havrå, Bergen közelében)
A tájtervezés földrajzi alapja
(Csorba P.)

4.5. ábra Hagyományos településkép és földhasználat Ny-Norvégiaban (Havrå, Bergen közelében)

Kétséges a jövője a Bécsi-medence keleti peremén a pannon biotóp nyúlványainak, a száraz gyepékek. Szerencsére az osztrák faházépítési stílus ma is eleven, itt kevésbé kell megküzdeni „toszkánsárga fertőzéssel”, soktornyos, balusztrádos tájidegen építészeti tévutakkal.

Németország tájidentitási magterülete kétségtelenül a Világörökséggé is nyilvánított középső-Rajna-vídekről (Dix, A. 2002, Schenk, W. 2002). Ez a legnemétebb folyó által átvágott, romantikus várrakkal szegélyezett, híres szőlőtermő középhegységi táj jó példa arra is, hogy a XIX. századi nemzettől válasz során a németek hogyan építettek ki tudatosan tájidentitásukat. Itt volt minden együtt, amihez a németek különös vonzódást éreznek, a germán történelmi levegő; Sigfriedtől a Loreley-szikláig, az erdőfedte hegyek, ahol a németek mindig a leginkább biztonságban éreztek magukat, és a produktív, erdőfedett hegyek, ahol a németek különös vonzódást éreztek, a germán történelmi levegő; Sigfriedtől a Loreley-szikláig, az erdőfedte hegyek, ahol a németek mindig a leginkább biztonságban éreztek magukat, és a produktív, erdőfedett hegyek, ahol a németek különös vonzódást éreztek. 150 évvel ezelőtt itt még külön építészeti stílus, az ún. rajna-romantikus neogót stílus is tájképfogalmi erővel járult hozzá a tájra jellemzők kialakításához. A német tájvédelem kemény küzdelmek folytatott ezeket az emlékekben német tábán megörzéséért, leginkább a folyami kavicsbányászat, a partbeépítés fokozódása, a szőlőparlagosodás és a közlekedés infrastruktúra ellen.

Részösszefoglalás

A tájtervezés a tájökológia és a tájesztétikai kutatások által támogatott, az általános tájvédelmet szolgáló gyakorlati célú munka, amely nagymértékben felhasznál tájökológia, geográfiai ismereteket.

Célja a „táji adottságok ésszerű kihasználása, a fenntartható tájhasználat és a táj ökológiai létét károsító lépések korlátozása, kiiktatása.” (Tress, G.)
A tájtervezést jelenleg Európában alapvetően meghatározza

- a kultúrtájak multifunkcionális felhasználása,
- erős társadalmi igény a jellegzetes táji karakterek megőrzésére és
- törekvés az ökológiai fenntarthatóságra.

A tájtervezés igyekszik fékezni

- a táji változatosság (diverzitás) csökkenését,
- a tájhasználat intenzitásának polarizálódását,
- a túlzott beépítést és
- elkerülni a tájfejlődési töréseket, az inkonzekvens tájhasználatot.

A tájtervezést egyre jobban befolyásolja a tájakról alkotott közmegítélés, egyre erősebb a nemzeti, a regionális vonásokat őrzi, gondozott és egészséges kulturtáj iránti igény.

A tájtervezés igyekszik fékezni

- a táji változatosság (diverzitás) csökkenését,
- a tájhasználat intenzitásának polarizálódását,
- a túlzott beépítést és
- elkerülni a tájfejlődési töréseket, az inkonzekvens tájhasználatot.

A tájtervezést egyre jobban befolyásolja a tájakról alkotott közmegítélés, egyre erősebb a nemzeti, a regionális vonásokat őrzi, gondozott és egészséges kulturtáj iránti igény.

A tájtervezést egyre jobban befolyásolja a tájakról alkotott közmegítélés, egyre erősebb a nemzeti, a regionális vonásokat őrzi, gondozott és egészséges kulturtáj iránti igény.

Középső mértékben tagolt a domborzat,

vannak nyílt vízfelületek,

változatos a növényösszetétel, döntően természetközeli a vegetáció,

közepesen mozaikos a földhasználat,

mérsékelt a beépítettség,

a vonalas infrastruktúra alárendelt a táj területében (tája illesztett),

vannak történelmi angolokat árasztó épületek, helyszínek,

az egész tájat sajátos mintázat, folthatás, kontraszt és színvilág jellemzi.

5. A fenntartható tájak tervezésének előfeltételei

A tájkutató szakértők kívétel nélkül arról írnak, hogy a tájtervezésnek ökológiai szempontból fenntartható tájakat kellene létrehozni. Az ökológiai fenntarthatóság és a tájtervezés egymásra találása azonban ma még alig kimutatható. Eddig hiába szorgalmazzák sokan az ún. „ökológiai tervezést”, az eredmény egyre nagyobb szerénynek mondható. A probléma hatékony kezelésére ma még egyik szakterület, az ökológiai és a mérnöki oldal sem eléggé felkészült.

Tudományos oldalról számos kérdés nyitott, a tervezői technikák pedig nem eléggé kifinomultak. Lényegében nincs elegendő és meggyőző indikátor az ökológiai fenntarthatósághoz. Opdam P. (2006) véleménye szerint pl. ma még nincs elegendő térbelileg is jól értelmezhető, explicit ökológiai törvény és küszöbérték. Az ökológiai megállapításoknak tehát nem tudjuk kellően értelmezni a térbeliséget, ill. fordítva; kevés az olyan területi koncepció, aminek egyértelmű az ökológiai jelentése. Végeredményben alig van olyan ökológiai alapelve, amit akár egy ökológiai szakemberek könnyedén hozzák tudna rendelni a tervben szereplő régióhoz, területehez, ad abszurdum; helyrajzi számhoz.

A helyzet hasonlít a környezeti hatásivizsgálatok kapcsán felvetődő nehézségekhez, hogy ti. egy leendő beruházás táji következményeinek előrejelzéséhez nagy szükség volna tájműködés számszerűsített anyag- és energiaforgalmának ismeretére. Ma a tájkutatás legaktualisabb és legfajásulósabb feladata annak tisztázása, hogy

1. a tájak működése, tehát anyag- és energiaforgalma milyen mechanizmusra épül,

2. azaz milyen összefüggés van az egyes tájak között, tehát melyek a tájműködés uralkodó és alárendelt elemei.

Csak a fenti viszonyok tisztázása után lehet reményünk arra, hogy megítéljük a tájműködés kulcsfontosságú tényezőit, vagyis kimutassuk, hogy ha beavatkozunk a táj valamely tényezőjének működésébe, annak milyen
következménye lesz a többi tájalkotóra, ill. az egész táj működésére nézve. Tovább kell lépni Armand, A.D., Miller, G.P., Szolncev, N.A. általános megállapításain, aki a rendszerelvű tájkutatás előfutáraként évtizedekkel ezelőtt felvázolták a tájalkotó tényezők hierarchikus viszonyát.

Tisztázunk kell a tájműködés mozgató rugóit, érzékeny pontjait, ami alapján kimondható, hogy a tájfelfüggesztés belső kapcsolatrendszere révén adott táj mely tényezőjének bolygatása okozhat tájhasználati gondokat. Mely tájalkotó érdemel figyelmet, amikor dönteni kell valamely táj egy adott társadalmi célként megfelelő használatáról.

A fenti feladatláncolat gyakorlatoryoriányához aligha férfhet kétség – ez magyarázza az ilyen célú kutatások aktualitását – hiszen a fejlett környezetgazdálkodással bíró területeken már elértékünk arra a szintre, amikor a táji adottságok, potenciállok kihasználása olyan bonyolult szövevényt alkot, hogy abba történő bármilyen beavatkozás sok áttételen, keresztezésükkel, messzire ható következményekkel jár. Az intenziv kultúrtájak adottságainak kihasználása olyan mértékű, hogy szinergikus hatások, egymástól társuló tájok és következmények fellépésével kell számolni.

A táji rendszer működésének egy igen jelentős szeletét képviseli a biogeográfiai alrendszer. A tájtervezéshez nélkülözhetetlen kérdés, hogy miként értelmezzük az ökológiai folyamatok területiségét, tájszerkezeti megjelenését?

A probléma megoldásához bizonyára közelebb fogunk jutni az utóbbi években két feltűnően sokat vizsgált témakör további kutatásával:

az ökológiai /tájökológiai folt-folyosó-mátrix rendszer megismerésével, és az ún. metapopulációk működésének feltárásával.

Mindkét fenti tájökológiai kutatási témakörnek közös eredménye az előhely-felderabolódás, vagyis a fragmentáció, amelynek meghatározó tényezőit vizsgáltuk az évente megváltozó ökológiai folyamatok, tájszerkezeti és tájműködési feltételek érihatását.

6. A funkcionális folt-folyosó-mátrix rendszer kutatásának legfontosabb eredményei

Az ökológiai alapokon álló tájtervezéshez megkerülhetetlen ismereteket produktált az 1980-as évek óta kiteljesedett ökológiai tájszerkezeti kutatás. Ennek eredményeként ma már egyértelmű, hogy a tájökológiai folyamatok megértéséhez három kulcsfontosságú tájökológiai témát kell ismerni:

- a tájökológiai folt (patch),
- a tájökológiai mátrix, és
- a tájökológiai folyosó (corridor)

A tájökológiai folt (patch) átlagosan néhány hektárnyi kiterjedésű, környezetétől eltérő fizikai és biogeográfiai adottságokkal – kimenekedés vagy mélyedés, hűvösebb vagy melegebb mikroklima, nedvesebb vagy szárazabb terület, eltérő talajtípus és az előbbiekből is következően más növénytakaróval – rendelkező terület. Természetes, vagy természetközeli környezetben ilyen foltok az ökotópok, az antropogén hatás növekedésével, a kultúrtájakban egyre gyakrabban telepített erdő, park, gyepterület, tó, mezőgazdasági parcela minősül tájökológiai foltnak, végül ezen foltok felépítésével, kisebb település is tájökológiai foltként jelenik meg.

A tájökológiai foltot minden irányból jól elkülöníthetően más fizikai minőséget képviselő, a foltnál lényegesen nagyobb kiterjedésű terület vesz körbe, amit tájökológiai mátrixnak nevezünk. A mátrix a táj domináns elemét képviseli, a tájökológiai foltmagasodásai és a mátrix által okozott struktúrákkal kapcsolatban van. A táj domináns elemét képviseli a tájökológiai folt aggregációja.

4.6. ábra - Szántóföld a mátrix, erdő a tájökológiai folt és a domb aljában a patakmenti cserjés-fás tájökológiai folyosó (Szilágyság, Románia)
4.6. ábra Szántóföld a mátrix, erdő a tájökológiai folt és a domb aljában a patakmenti cserjés-fás tájökológiai folyosó (Szilágyság, Románia)

Ökológiai szempontból a védendő értéket többnyire az ökológiai foltok képviselik. Ezek az eredetileg is izolált, vagy a földhasználat miatt izolálódott, csekély kiterjedésű foltok rejtik olyan élőhelyeket, amelyek a társadalom számára eszméi értéket képviselnek, ugyanakkor sérülékenyek, veszélyeztetettek, a természetvédelem célterületei. Az ökológiai szempontból működőképes, hosszú ideig fennmaradó, folyamatos emberi beavatkozással megtartható tájat eredményező tervezésnek leginkább ilyen foltok megmentése, megőrzése a közvetlen feladata.

A tájökológiai foltok fennmaradását természetes körülmények között is segítettek a hasonló ökológiai típusz képviselő foltokat összekötő hosszanti elemek, a tájökológiai folyosók (korridorok). A természetben a folyosók leggyakrabban a vízfolyások mentén jöttek létre, de az alacsonyabb régiókban a lealacsonyodó középhelyeségi hegycsatornák erdőkorlátja is az alacsonyabb régiókban foltokra szakadózott, amiket már csak keskenyen erdősávok kötnek össze. Erdővel fedett tájakon helyenként korridorok kötötték össze a tisztások gyeppáljait, az alföldi erdőösszegegyemek későjén, ahol már a fűves vegetáció képviseli a mátrixot, a kisebb-nagyobb erdőfoltokat, a lefűződött, az élő folyótól egyre inkább elszigetelődő meanderek foltjait stb. A kultúrtájakon az emberi földhasználat leginkább ezeknek a keskenyen, hosszú összekötő elemeknek a hálózatát ritkította meg (4.7. ábra). Az egykori vizes élőhely mosaras föltját még nem vonták művelésbe, az egykori folyókanyarulat legmélyebb részén még víz csillag, nádas, puhafás ligeterdei veszi körbe, de a meander sebessége szakaszt még beszúrattották, út keresztezi, azaz az 1-2 km-re lévő folyó felé vezető egykori nedves élőhelysávot, a meander karjai mentén egyre halványodik az egykori összekötette. Az erős antropogeén hatás alatt álló kultúrtájakban csőkevényesen, de ökológiai folyosó funkció alakult ki a csatornák, a vasútvonalak, a közútak mentén. A települések pedig egészen sajátos foltjai az ökológiai hálózatnak. A településeken átvezető folyóvizek mentén pl. ma tudatosan kialakítanak ökológiai folyosókat.

4.7. ábra - Két erdőfoltot összekötő folyamatos és megszakadó ökológiai folyosó szántóföldek között (Karád, Külső-Somogy)
4.7. ábra Két erdőfoltot összekötő folyamatos és megszakadó ökológiai folyosó szántóföldek között (Karád, Külső-Somogy)

Az utóbbi 20-25 évben számos tájökológiai kutatás igyekezett tisztázni a korridorok pontos szerepét (Hilty, J. et al. 2006). Kifejezetten tájtervezési kérdésként vetődött fel, hogy az értékes tájökológiai foltok és ezzel a tájdiverzitás megőrzését milyen mértékben segítheti a folyosók védelme, netán új, mesterséges folyosók kialakítása. Bebizonyosodott, hogy a korridorok jelentős mértékben hozzájárulhatnak a foltok életképességének megőrzéséhez, sőt a folyosók egy része élőhelyként (habitat corridor) sem elhanyagolható szerepet játszik a tájműködésben. Úgyanakkor a folyosók jelentőségét sem szabad túlértékelni, nem jelentenek univerzális megoldást minden (táj)ökológiai problémára. Kiderült, hogy vannak a korridoroknak is komoly veszélyei, a tájökológiai szerkezetben a folyosók öncélú szaporítása ellenkező hatást is kiválthat. A korridorok előnyös, és hátrányos szerepét foglalja össze az 4.1. táblázat.

4.1. táblázat: A tájökológiai folyosók ökológiai szempontból előnyös és hátrányos hatása (Linehan J. et al. 1995)

<table>
<thead>
<tr>
<th>A tájökológiai folyosók előnyös ökológiai hatása</th>
<th>A tájökológiai folyosók hátrányos ökológiai hatása</th>
</tr>
</thead>
<tbody>
<tr>
<td>a növekvő fajbevándorlás fenntarthatja, vagy a növekvő fajbevándorlás elősegítheti a betegségeket, a járványok terjedését</td>
<td></td>
</tr>
<tr>
<td>a növekvő fajbevándorlás növelheti egy-egy faj populációjának nagyságát a növekvő fajbevándorlás csökkentheti a populációt belüli genetikai variabilitás mértékét (outbreeding depression)</td>
<td></td>
</tr>
<tr>
<td>a növekvő fajbevándorlás csökkentheti a fajkihalász válságát a növekvő fajbevándorlás csökkentheti a populációt belüli genetikai variabilitás mértékét (outbreeding depression)</td>
<td></td>
</tr>
<tr>
<td>a növekvő fajbevándorlás révén egy-egy faj újra a növekvő fajbevándorlás csökkentheti a populációt belüli genetikai variabilitás mértékét (outbreeding depression)</td>
<td></td>
</tr>
<tr>
<td>a növekvő fajbevándorlás csökkentheti a fajkihalász válságát a növekvő fajbevándorlás csökkentheti a populációt belüli genetikai variabilitás mértékét (outbreeding depression)</td>
<td></td>
</tr>
<tr>
<td>az ökológiai folyosó által elérhető területek révén a növekvő fajbevándorlás csökkentheti a populációt belüli genetikai variabilitás mértékét (outbreeding depression)</td>
<td></td>
</tr>
<tr>
<td>migrációs útvonalat és rejtékhelyet nyújt a növekvő fajbevándorlás során a növekvő fajbevándorlás csökkentheti a populációt belüli genetikai variabilitás mértékét (outbreeding depression)</td>
<td></td>
</tr>
<tr>
<td>a növekvő fajbevándorlás növelheti a táplálék beszerzési tevékenységet a növekvő fajbevándorlás csökkentheti a populációt belüli genetikai variabilitás mértékét (outbreeding depression)</td>
<td></td>
</tr>
<tr>
<td>erős külső zavaró hatások esetén alternativ menedékhelyet nyújt a növekvő fajbevándorlás csökkentheti a populációt belüli genetikai variabilitás mértékét (outbreeding depression)</td>
<td></td>
</tr>
<tr>
<td>nem vizsgált fajok számára hátrányos lehet a növekvő fajbevándorlás csökkentheti a populációt belüli genetikai variabilitás mértékét (outbreeding depression)</td>
<td></td>
</tr>
<tr>
<td>migrációs útvonalat és rejtékhelyet nyújt a növekvő fajbevándorlás során a növekvő fajbevándorlás csökkentheti a populációt belüli genetikai variabilitás mértékét (outbreeding depression)</td>
<td></td>
</tr>
<tr>
<td>az ökológiai folyosó által elérhető területek révén a növekvő fajbevándorlás csökkentheti a populációt belüli genetikai variabilitás mértékét (outbreeding depression)</td>
<td></td>
</tr>
<tr>
<td>konfliktus az izolációt preferáló konzervációbiológiai stratégiával szemben a növekvő fajbevándorlás csökkentheti a populációt belüli genetikai variabilitás mértékét (outbreeding depression)</td>
<td></td>
</tr>
<tr>
<td>az ökológiai folyosó által elérhető területek révén a növekvő fajbevándorlás csökkentheti a populációt belüli genetikai variabilitás mértékét (outbreeding depression)</td>
<td></td>
</tr>
<tr>
<td>nem vizsgált fajok számára hátrányos lehet a növekvő fajbevándorlás csökkentheti a populációt belüli genetikai variabilitás mértékét (outbreeding depression)</td>
<td></td>
</tr>
<tr>
<td>migrációs útvonalat és rejtékhelyet nyújt a növekvő fajbevándorlás során a növekvő fajbevándorlás csökkentheti a populációt belüli genetikai variabilitás mértékét (outbreeding depression)</td>
<td></td>
</tr>
<tr>
<td>az ökológiai folyosó által elérhető területek révén a növekvő fajbevándorlás csökkentheti a populációt belüli genetikai variabilitás mértékét (outbreeding depression)</td>
<td></td>
</tr>
</tbody>
</table>
A tájtervezés és földrajzi alapjai
(Csorba P.)

34

A fentiekből világosan kitűnik, hogy a tájökológiai folyosók várható ökológiai szerepét alaposan mérlegelni kell, s pusztán az összeköttetés megtartása, megerősítése, vagy kialakítása nem biztos, hogy működőképes ökológiai hálózatot fog eredményezni. Fontos tudni, hogy a tájökológiai folyosóknak számos típusa van – a keskeny, itt-ott megszakadó gyepecsikoktól a bokor vagy fasoroktól kezdve a széles, folyamatos összekötő elemig sokféle változat létezik (pl. line corridor, line corridor with nodes, stepping stone corridor, landscape corridor, greenbelt corridor, riparian buffer stb.) (Forman, R.T.T. 1995).

Az ökológiai alapokon álló, fenntarthatóan működőképes táj megtervezésére nézve a tájszerkezet kutatások eddigi tanulságai alávali összegezhetők,
a a tájökológiai foltok-mátrix és folyosó rendszert együtt kell elemzni, értékelni, alakítani,
a a tájökológiai mátrix képviseli a táj működésének alapját, a foltok tartalmazzák a legtöbb biológiai értéket a folyosók pedig nagy mértékben hozzájárulhatnak a foltok működőképességéhez,
tisztaíni kell, hogy mi a beavatkozás fő célja, a foltok, a folyosók adottságainak javítása sok esetben csak az élőlények bizonyos csoportjának kínál előnyöket, más fajok számára káros is lehet,
an ökológiai, természetvédelmi cél csak az egy társadalom egyéb táj környezettel elvárt szükségletei mellett – a beépítési, az infrastruktúra fejlesztési, a rekreációs stb. igény között – éles konfliktusok lehetnek, ami miatt gyakran ökológiai szempontból csak „fél-megoldások” születnek,
a a mátrix-folt-folyosó mintázatnak igen erős a tájakép-meghatározó, tájesztett hatása,
a vizuális tájegység megőrzése egyre fontosabb a nemzeti, a regionális és az egyéni identitás megtartása szempontjából,

minden tervezési helyszín hordozhat egyedi vonásokat,
an ökológiai tájszerkezet területi mintázatának értelmezése természetföldrajzi ismereteke kíván,
a a tájhasználati mintázat értékelésére specializált összekötő szakterület a tájmetria (ld. később).

7. A csökkenő emberi hatás alatt álló tájak arányának növekedése

Vitatkoznunk kell Antrop az európai tájakat illető pesszimista megállapításával amiatt is, mert a tájidentitásra, a táj környezetre történő fokozódás érzékenység mértéke, másik jellemző európai tendencia a természetvédelmi területek növekedése. Márpedig a Natura 2000 területek kijelölésével a valamilyen szinten védettséget élvező ökörendszer az aranya kontinentális szinten látványosan megöntött, elérte a 10-12%-ot. A sűrűn lakott országokban ez az arány 20%, Magyarországon pl. 21%. A természetvédelmi kezelés alatt álló területeken semmiképp sem lehet a táj helyzetének drasztikus romlásáról beszélni.

Az kétségtelen, hogy az Antrop – és mások – által említett tájhasználati intenzitás, az egymás mellett, vagy közelében lévő területek művelésének differenciái nagyok, élesek, az ökológiai tájkontraszt igen magas és ez még valóban növekedni is látszik. Ennek a problémának az ökológiai oldalán segítene egy olyan tájkezelést, ahol a kevésbé mozgékony állatok, ill. a növényvilág számára lehetőség van a természetes élőhelyfoltjuktól – erdő, bokorerdő, vagy füves rét – ökológiai adottságának csak kismértéken eltérő területfolt felé mozogni.

Ha pl. két izoláltabb rétfolt között van egy bokrosgyepes összeköttetés, akkor a szoban forgó élőlények számára ez az irány reális migrációs lehetőség (4.8. ábra). Ha a gyepfoltot nagyrészt szántók, ültetvények veszik körül, és csupán egyetlen bokrosgyepes területfolt keresztül van lehetőség a szomszédos gyepfolt eléréséhez, akkor nyilvánvalóan ennek az összekötő elemnek „stratégiai fontossága” van.

4.8. ábra - A művelés felhagyása miatt csökkenő mozaikosság felé haladó tájszerkezet Füzér határában. Az izolálódó gyepfoltok élővilágának még van lehetősége különböző élességű folt-grádiensek felé mozdulni (ld. a fenykép felső harmadában), a jelenlegi benövényesedési tendencia viszont a fás-bokros élőhely lakóinak kedvez.
4.8. ábra A művelés felhagyása miatt csökkenő mozaikosság felé haladó tájszerkezet Füzér határán. Az izolálódó geypfoltok élővilágának még van lehetősége különböző élősségű fölt-gradiensek felé mozdulni (ld. a fénykép felső harmadában), a jelenlegi benövénysedési tendencia viszont a fás-bokros élőhely lakóinak kedvez.

A magyarországi tájtípusokat alapul véve a fölt-gradiens tagjai többsnyire a következő földhasználati föltokból épülnek fel;

erdő → bokorerdő → rét/legelő → parlag → szántó → szőlő/ültetvény → beépített területet

Úgy gondoljuk, hogy az ökológiai alapokon álló tájtervezésnek fokozott mértékben kellene figyelembe venni az ilyen tájmintázati helyzeteket. A nagy részletességű tájökológiai térképekken, akár egy CORINE űrfelvételen, egyszerű módon kijelölhetők azok a foltsorozatok, amelyek tagjai között a legkisebb ökológiai különbségek vannak, tehát a migrációval szemben a legkisebbbarriert képviselik.

8. A beépítettség növekedése, a fragmentáció és a metapopuláció kérdése

Igazat kell adnunk az európai tájak működőképességének megőrzéséért aggódó szakembereknek abban, hogy a beépített területek aránya, különösen pedig a közlekedési infrastruktúra gyarapodása megállíthatatlan folyamatnak tűnik (Lindenmayer, D. – Fischer, J. 2006). Sajnos semmi jele annak, hogy a városi agglomerációk, vagy a tengerparti, egyéb vízparti és hegyvidéki üdülőterületi beépítés üteme alábbhagyja. Valóban tájékozódhatunk ezen a téren, ha ezzel párhuzamosan rohamosan elnéptelenednek a tájokban lévő vidékek. 1900-ban Spanyolország lakosságának 12%-a élt a tengerközelinek tekinthető 50 km széles övezetben. Ma ez az arány 38%!

A lakó- vagy üdülőterületi beépítés extrém mértéket ölött az Alpok völgyeihez is. A völgytalpakon, az összterület 8%-án van a településések 85%-a, intenzív mezőgazdaság 90%-a, kereskedelmi egységek 95%-a (4.9.
ábra). A nagyon intenzíven használt mezőgazdasági foltok, és a beépített területek között csak igen szigorú természetvédelmi szabályok betartásával lehet megtartani néhány természetközeli élőhelyet. A tájmozaik kontrasztossága már önmagában is probléma – ld. előző fejezet – s akkor még ott van a táj vonalas műszaki elemek; út, vasút, elektromos- és csővezetékek, csatornák általi sűrű felszabadultsága.

4.9. ábra - Növekvő völgytalpi beépítés az Alpokban (Zillertal)

Az újabban „ökofizikális (ecophysical)” mutatóknak nevezett adatok azonban még mindig inkább egy-egy fajra vonatkoznak, és alig vannak megbízható eredményeink az élőlénycsoportok, társulások hosszú távon életképes fennmaradásához szükséges terület nagyságáról. Hazai viszonylatban az ártéri puhafás ligeterdők esetében vannak óvatos becslések, amely szerint 20-30 hektárnnyi összetett, nélkülözhetetlen az ilyen társulás fennmaradásához.

4.10. ábra - Utak és vasutak által fragmentált táj Amszterdam közelében (Hollandia)
Minden növény- és állatpopulációknak más kiterjedésű fizikai élettérre van szüksége. Sajnos a legtöbb esetben még nem tudjuk megmondani, hogy egy adott helyen mekkora minimális térgyéménye van pl. egy gyöngyvirágos töltynesnek, vagy egy alkhavasi gyepnek. Ehhez a becsléshez annyira sok független változót, helyi adottságot, egyedi körülményt, szinergikus kölcsönkapcsolatot kell mérlegelni, hogy azt még többnyire nem tudjuk átlátni.

Elsősorban a fő közlekedési utak, a vasutak, valamint a települési beépítések okoznak erős élőhely fragmentációt (4.10. ábra), (Forman, R.T.T. 1995, Csorba P. 2008). Az autóutak építésének komoly ökológiai következményei annyira nyilvánvalóak, hogy ezek a beruházások már sok országban elérték a társadalmi ingerküszöböt, és a közvélemény erős nyomása hezedik a döntéshozókra, hogy keressék a leginkább környezetkímélő vonalvezetés lehetőségét. Ma már a hazai autópályák alatt és fölött is átjárókat építenek, bár ezen létesítményeknek ökológiai hatékonyságáról megoszlanak a vélemények. A kérdésre valószínűleg nem lehet leegyszerűsített választ adni; mert bizonyos élőközösségek számára valóban életmentő, mások számára kevésbé hatékonyak ezek a vadátjárók és alagutak, mesterségesen kialakított kapcsolatok.

A hosszú távon – előre láthatóan legalább 50 évig – életképesnek tekinthető populáció területi dinamikájának kutatása a klasszikus szigetbiogeográfiai megállapításokat követően újabb az ún. metapopulációs vizsgálatokkal vett rendületet. A metapopuláció – leegyszerűsítve; a kvázi-független, szaporodási közösséget alkotó, de nem egy élőhelyet birtokló részpopulációk – vizsgálatából szintén fontos tájökológiai, tájtervezési következtetések vonhatók le, hiszen ezúttal is arról van szó, hogy melyik az a térbeli mintázat, amely még biztosítja a populáció életképességét. Melyen minimális élőhelynagyság és milyen intenzitású kapcsolat kell az részpopulációk között, amely még képes fenntartani a populációt.

Hanski, I. (1999) megállapítása szerint a populáció léte akkor biztosítot, ha az egymás közeli metapopulációs élőhelyek között kiegyenlítődik a lokális fajkihalás és az újra benépesedési (rekolonizációs) folyamat. Néhány metapopulációs élőhely elvesztését kiváltja néhány folt meghódítása. Ehhez feltétlenül szükség van a foltok közti fajvándorlásra, a migrációra, amit az ökológiai folyosók megléte nagyban megkönnyíti.

9. A tájmetria és a tájtervezés

Az előző fejezetekben láttuk, hogy a geográfia elsősorban a tájalkotó tényezők állapotának és a tájökológiai alapelemek (folt, mátrix, folyosó) területi mintázatának elemzésével járulhat hozzá a sikeres, ökológiai alapokon álló tájtervezéshez. A tájökológiai alapelemek területi mintázata, azaz a foltok nagysága, alakja, egymáshoz mért távolsága, a folyosók szélessége, hossza, azaz csupa geometriailag leírható mutató alapvetően befolyásolja a táj ökológiai működését.
A táj mintázatának = pattern intenzív vizsgálata 1990-es évek elején, elsősorban egyesült államokbeli kutatók munkásságával vett új lendületet. Az új tájkutatási fejezet megnyilásához két fontos körülmény különösen hozzájárult:

1. az űrfelvétel és a képfeldolgozás technikai hátterének fejlődése,
2. másrészre az amerikai tájökölési gyakorlatorientált szemléletének kiteljesedése.

Hatalmas előrelépést jelentett az űrfelvétel és a képfeldolgozás technikáinak alapjainak válása, a CORINE rendszerű felvétel széleskörű elterjedése, továbbá az amerikai Mezőgazdasági és Erdészeti Szolgálat két kutatójának; McGarigalan és Marks-nak 1995-ben publikált ún. FRAGSTATS számítógépes szoftverre.

„tájfragmentáció, tájmintázat a fraktálgeometria, a témamodellek, a tájökölési foltok, a folyosók, az ökológiai találkozás zónák és határfelületek, az összekapcsoltság, a mozaikosság, a városi és rurális találkozás övezet”.

• a foltok terület/kerület arányát,
• a legközelebbi hasonló folt távolságát és
• a határfelületek (az ún. ökotonok) hosszát.

Úgy is fogalmazhatnánk, hogy már az is minőségi előrelépés volna, ha a felsorolt tájmetrikai mutatók megjelennének a hazai tájtervezési folyamatban. Már ennek a néhány mutatónak a figyelembe vétele is lényegesen javítaná a tájtervezés ökológiai megalapozottságát.

10. A tájtervezési elméletek

Jack Ahern (1995) szerint a tájtervezésben négyféle megközelítési stratégiát lehet elkölni:

a protektív,
• a defenzív,
• az offenszív, és
• az opportunista.

1. Az első, a protektív stratégiát olyan tájak esetében alkalmazható, ahol jól működő, fenntartható tájökölési folt és folyosó rendszer van. Lényegében megvan egy ép, optimális tájtervezés, az egyéb tájhasznosítás nem
veszélyezteti a rendszer fontos elemeit, ezek megőrzése tudatos, jogilag biztosított és nem okoz terület használati konfliktust.

2. A defenzív stratégia a már fragmentált tájaknál alkalmazható, ahol az ökológiai rendszer fontos magterületei már beszűkültek, működésük hatékonyága korlátozott. Szükség van a meg meglévő tájokológiai foltok és folyosók aktiv védelmére a fragmentáció és az urbanizáció hatásai ellen.

3. Az offenzív tájtervezési stratégia egy már ökológiai működésében károsodott, töredékkessé téve itt változást és legkésőbb a táj megérthetetlenségét és utódiadását fenntartását. Ezért minden terület egy jövőbeli igényesebb, működőképes tájtervezés kialakításának.

4. Az opportunista stratégia egy-egy értékes, izolált, zárányszervek utolsó elővágás megőrzését jelenti. Õkológiai szempontból nem feltétlenül a legjobb helyen vannak, de elég értékesek ahhoz, hogy megtartassák indokolt legyen. Ilyen pl. a felhagyott ipartelepek, régi vasúti töltéseken megmaradt, vagy visszatelepült különleges elővágás. Gyakran tartalék terület a jövőbeli igényesebb, működőképes tájtervezés kialakításának.

Széleskörû publicitást kapott az amerikai tájökológia egyik legismertebb egyénisége, Formannak 1995-ben kidolgozott elve, amely „Aggregate-with-Outliers Principle” elnevezést kapta. Magyarul „Halmazok és Kijáratok Elv”-ként fordítható koncepció szerint az ökológiai optimális tájtervezetben az intenzív használt foltok között fenn kell tartani a vénkö ökológiai folyosókat is, de a nagy terület használati foltok közötti határzónán ment kijáratot kell biztosítani az emberi mozgásnak is. Helyenként nagy természetközi foltokat kell hagyni, de alapvetően előnyös a változatos föltméret, ami támogatja a fajdiverzitást, a specialisták és a generalista fajok egyensúlyát, és az izoláciomokban lehetőséget nyújút a genetikai különlegességek révén a variabilitás fenntartására.

A tájökológiai foltok szerepének ismeretében széleskörû szakmai vita alakult ki, amit a szakirodalomban a „SS/SL ” rövidítéssel jelölték. A „Several Small or Single Large” azaz Sok Kis, vagy Egy Nagy Folt kérdés arra vonatkozik, hogy az ökológiai szempontból vajon a sok kisfolt, vagy az egy nagyobb folt biztosít jobb túlétlési esélyt a populációknak? A sok kis folt veszélye nyilvánvalóan a genetikai beszükséges előnye a több előhelyfolt rugalmasássá. Az egy nagy folt populációja biztosabb lábon áll genetikai és populációdinamikai szempontból, a külsős hatásokkal szemben is erősebben ellenállást tud kifejteni, de ha egy betegség vagy természeti katasztrófa foltot csökkenti a menekülési lehetőség. A szakmai érvek és tapasztalatok összefüggése után végül az a vélemény alakult ki, hogy optimálisnak az egy nagy és körülményt hanyag kisebb folt szerkezet tekinthető. Az ökológiai szempontokat érvényesítő tájtervezési gondolkodásban tehát ez utóbbi mintázat megtartására, kialakítására kell törekedni.

Részösszefoglalás

Részösszefoglalás

A táj működését, a tájalkotó tényezők viszonyrendszerét még nem ismerjük annyira, hogy pontosan meg tudnának határozni a tájrendszer beavatkozások várható következményeit.

Az ökológiai megállapításoknak nem tudjuk kellően értelmezni a térbeli vonatkozásait, ill. kevés az olyan területi koncepció, aminek egyértelmű az ökológiai jelentése.

Az utóbbi néhány év után ismerős minőségi előrelépést hozott az ökológiai tájtervezéi alapjait: a folt, a mátrix és a folyosó szerepét, tulajdonságainak megismerésére. Az ökológiai, természetvédelmi értékeket többnyire a tájokológiai foltok hordozzák, amelyek megőrzésében fontos szerepük lehet a tájokológiai folyosóknak. A táj működését viszont a mátrix biztosítja.

Created by XMLmind XSL-FO Converter.
Az ökológiai tájtervezet működésére nézve legnagyobb vesztelet a vonalas műszaki létesítmények által okozott élőhely feldarabolódás; a fragmentáció okozza. Miközben nem ismerjük számos élőlény, populáció és társulás minimális élőhelyigényét.

Az élőhelyek fragmentálódásának káros ökológiai következményeit csökkenti a metapopulációs élőhelymintázat és az ezek közötti jó összeköttetés (connectivity).

A tájmetria kutatások és eredmények nélkülözhetetlen információk טלélnek az ökológiai alapokon álló tájtervezés számára, miközben a térinformatikai alkalmazás révén erősíti a geográfia szerepét a tervezési folyamatban.

A tájmetria adatok közül indokolt figyelembe venni a tájtervezés során a

- foltsűrűséget,
- terület/kerület hányadost,
- a legközelebbi hasonló folt távolságát
- és a szegélyhossz (ökoton) adatot.

A korszerű tájtervezés elkezdett alkalmazni néhány ökológiai elveken alapuló modellt, amelyek közül érdemes megjegyezni a:

- a folt-grádiens modellt,
- a „Halmazok és Kijárat” modellt,
- a „Keret-koncepciót” és
- az SS/SL alapelvet.

11. A hazai tájtervezés hierarchikus szintjei

A tájtervezés, tájrendezés természetesen nem „nulláról indulva” kezd dolgozni a feladaton, hanem beépül egy át fogó tervezési rendszerbe, egy olyan hierarchiába, amely sokszor igen komolyan korlátozza a tervezési, megvalósítási lehetőségeket.

A fölösleges munka, ill. jogi, földhasználati hibák elkerülése érdekében ezeket a viszonyítási sarokpontokat igen jól kell ismerni, követni kell a folyamatos törvénykezési változtatásokat is.

A hazai tervezési rendszerben a tájtervezés a területrendezési terveknek egy fajtája, amely az ökológiai és a tájesztétikai alapelvek mentén a táj teljesítőképességének, termelőképességének és esztétikai megjelenésének javítására irányul.

A tájrendezési tervek kidolgozása, felépítése a következő logikát követi:

- Tájvizsgálat = az adottságok felmérése,
- Tájtértékelés = lehetőségek áttekintése,
- Tájprogram = a megvalósítható cél megfogalmazása,
- Tervjavaslat = a kivitelezés leírása.

Nálunk jelenleg a legfontosabb, országos szintet képviselő dokumentum az Országos Területfejlesztési Koncepció (OTK), amelyet az Országyülség fogad el és Országyülség Határozatként jelenít meg. Ennek feladata meghatározni a hosszú távú területfejlesztési célokat, irányelveket, továbbá alapinformációkat nyújt az általános és az ágazati területfejlesztések számára. A ma aktuális, 2005-ben elfogadott, kisebb mértékben többször módosított dokumentum az alábbi módon fogalmazza meg az ország új. területi jövőképét.

„A cél egy olyan harmonikus és fenntartható társadalmi-gazdasági-környezeti térszerkezet és területi rendszer létrejötte, amely a helyi adottságokra épül, saját arculattal és identitással rendelkező térségekben szerveződik, amely szervesen és hatékonyan illeszkedik az európai térbe, s amelyben a társadalom számára az alapvető
esélyeket meghatározó környezetvédelmi és életkörülmények tekintetében nincsenek jelentős területi egyenlőtlenségek” (97/2005.(XII.25.) OGY határozat).

Ezután foglalkozik az ország 2020-ig terjedő hosszú távú területhasználatának főbb irányait.

„Régióinknak, térségeinknek olyan fenntartható rendszerekké kell válniuk, amelyek értékeket, örökségüket, erőforrásait és bőső összetartozásukat nem csak megőrizik, hanem azokat tovább erősítik, a társadalom, a gazdaság és a természeti-környezeti, kulturális elemei összhangját helyi-térségi rendszereikben az átfogó környezetgazdálkodás és az integrált környezeti tervezés segítségével biztosítják.”

Ezután vannak 2013-ig terjedő, tehát középtávú időszakra megfogalmazott regionális területfejlesztési politikai célok. Pl. a Tisza-menti térségre vonatkozóan az alábbiak:

A Tisza térség (a Tisza-menti, a Vásárhelyi Terv Továbbfejlesztése, valamint a Tisza-tó üdülőkörzet által érintett terület) fenntarthatás felzárkóztatása: integrált fejlesztéséhez a Tisza által meghatározott táji rendszer működőképességének biztosítása és az ökológiai kritériumoknak megfelelő fenntartható társadalmi, gazdasági fejlődés feltételeinek megteremtése.

Az alábbi célok elérése szükséges:

a Tisza-menti térség védett természeti és kulturális örökségének megőrzése és hasznosítása;

a Tisza-menti térség vízgazdálkodási rendszerének (természeti tározóknak, hullámtereknek) kiépítése és ennek következményeként a megfelelő tájhasználathoz kapcsolódó erdészeti-, mezőgazdasági tevékenység kialakítása;

a helyi termelői, szolgáltatói együttműködéseket ösztönzése, jelentős kulturális, táji értékekkel rendelkező területeken a turizmus, kiemelten az ökoturizmus fejlesztése;

a helyi szereplők összefogásának, a partneresek támogatása: a foglalkoztatás bővítése, a nem foglalkoztatottak munkaerő-piaci integrációjának támogatása, foglalkoztatathatóságuk javítása;

a Tisza-menti térség külső elérhetőségének javítása, az árvíz, belvíz és az aszály környezetkárosító hatásainak integrált kivédése, megelőzése, ártéri tájréhabilitáció;

A Tisza turisztikai valamint személy- és teherhajózás lehetőségeinek - környezeti szempontok integráló – megteremtése a kapcsolódó infrastruktúra háttérével együtt (kikötőfejlesztés, hajóépítés felélesztése).

Foglalkozik a leírt fejlesztési tervek megvalósítását szolgáló eszköz- és intézményrendszer fejlesztési irányaival, valamint a nagy régiók fejlesztésének fő irányaival is. Pl:

„Dél-Alföld (Bács-Kiskun megye, Békés megye, Csongrád megye) A régió közös érdekeken alapuló együttműködési hálózatok kialakításával, a természeti értékek, és a határ menti helyzetből adódó előnyök tudatos kihasználásával megalapozza a szilárd, versenyképes gazdaság alapjait, és mindehhez színvonala
életkörnyezet és életlehetőség biztosít.”

A határozathoz terjedelmes melléklet csatlakozik, amely sok fontos térképes dokumentumot is tartalmaz.

4.11. ábra - Természeti és táji értékekben gazdag területek
4.11 ábra Természeti és táji értékekben gazdag területek

Az OGY határozatban szereplő területfejlesztési politikai célkitűzéseket a mellékletekben tovább részletezik, külön a 2020-ig és külön a 2013-ig terjedő időszakra nézve.

4.12. ábra - Az OTK célrendszere
4.12 ábra Az OTK célrendszere

„Környezeti és kulturális szempontú tervezés érdekében indokolt:

• A táji egységek településcsoportjainak gazdaságfejlesztési együttműködéséi és a faluhatárokat kialakítása;

• A tájébe, természetvédőtők, tájok, és tájok környezetei és kulturáliai szempontokat érvényesíteni a mező- és erdőgazdasági tevékenységek összehangolásával, őshonos fajok telepítésének összpontosításával;

• A térségek erdőterületeinek természetességét javítani, törekedve a tájok erdőtömbjeinek összefonására is;

• A térségek megteremthető alapját feldolgozni;

• A tájterületeinek erdőterületeinek együttesmegóvása, környezeti fejlődése;

• A kastélyok, kúriák, várak, egyedi (kulturális) értékek (hida, emlékhelyek, keresztek, emlékfák, stb.) állagmegővésze, környezeti fejlődése;
A tájtervezés és földrajzi alapjai
(Csorba P.)

• A táji értékek tűz- és katasztrófavédelmének biztosítása."

Máshol mintha csak ismételné jegyzetünk bevezetőjében leírt célkitűzésünket, amikor azt olvassuk, hogy:

„a tervezés multidiszciplináris szakmai kapacitásainak és tudományos megalapozásának erősítése szükséges, a tervezési módszertanok és a tervezést segítő kutatások támogatásával” (OTK, OGY határozat melléklete: 29. oldal).

Ez a hazánkban megjelent harmadik ilyen stratégiai program, s felépítése hasonló az OTK-hoz, vagyis; helyzetértékelés, jövőkép, célok, eszközök, akcióprogramok. Ez utóbbi fejezetben azonban jóval részletesebben tárgyalják az alábbi témaköröket:

„5.2. Éghajlatváltozás

5.2.1. Az üvegházhatású gázok kibocsátásának csökkentése

5.2.2. Felkészülés az éghajlatváltozás hatásaira

5.2.3. Őzontávolító anyagok kibocsátásának csökkentése

5.3. Környezet és egészség

5.3.1. Beltéri levegőminőség

5.3.2. Biológiai allergének

5.3.3. A vízminőség és egészség

5.3.4. Élelmiszerbiztonság

5.3.5. Klima és egészség

5.3.6. Környezet-egészségügyi információs rendszer

5.4. Települési környezetminőség

5.4.1. Településfejlesztés, -rendezés és környezetvédelem

5.4.2. A települések levegőminőségének javítása

5.4.3. A zajterhelés csökkentése

5.4.4. Közlekedés és környezet

5.4.5. A települési közszolgáltatások és a környezetvédelem

5.5. A biológiai sokféleség megőrzése, természet- és tájvédelem

5.5.1. A természeti és táji értékek védelme

5.5.2. Természetvédelmi őrzés, kezelés, fenntartás

5.5.3. Károsodott területek helyreállítása, káros hatások csökkentése

5.5.4. A természetvédelem feltételrendszerének javítása

5.6. Fenntartható terület- és földhasználat

5.6.1. Területrendezés és környezetvédelem

5.6.2. Ásványkincsekkel való fenntartható gazdálkodás
5.6.3. Talajok védelme és fenntartható használata

5.6.4. Környezetbarát mezőgazdasági gyakorlat

5.6.5. Az erdőgazdálkodás környezeti aspektusai

5.7. Vizeink védelme és fenntartható használata

5.7.1. Vizeink „jó állapotának” elérése: vízváujtó gazdálkodási tervezés és monitoring

5.7.2. Stratégiai vízkezelés mennyiségi és minőségi védelmét szolgáló, kapcsolódó programok

5.7.3. Területi vízgazdálkodás, vízkármegelőzés és elhárítás

5.7.4. Kiemelt fontosságú és országos jelentőségű érzékeny víztestek állapotának javítása

5.8. Hulladékgazdálkodás

5.8.1. Megelőzés

5.8.2. Hasznosítás

5.8.3. Ártalmatlanítás

5.8.4. Hulladékgazdálkodási tervezés

5.9. Környezetbiztonság

5.9.1. Környezeti kármegelőzés és kárelhárítás

5.9.2. Környezeti kármentesítés

5.9.3. Kémiai és sugárbiztonság”

Látjuk, hogy a fenti fejezetek egyike, az 5.5.1. már a tájvédelemmel foglalkozik,

„A természet védelme nem csupán a védett területekre, hanem a nem védett területekre, a táj egészére is ki kell terjedjen. Ez a területi és ágazati tervezésen túl az egyes területihasználatok környezetkímélő és a táj értékek megőrzését biztosító gyakorlatán keresztül biztosítható. A táj szerkezetét, jellegeinek, ökológiai, ökonómiai és tájesztetikai potenciáljának megőrzésére céljainkban kiterjedő területi tervek közül megtörtént az OTT törvény felülvizsgálata, amelyben a tájképüvedelmi övezetek és az országos ökológiai hálózat (azaz a Nemzeti Ökológiai Hálózat) szabályozása jelent előrelépést a nem védett tájak megőrzésében kevés előrelépés történt. A kedvezőtlen mezőgazdasági szerkezet és a hagyományos tájkezelés és tájfelhasználásban szerepet játszó tevékenységek támogatásának hiánya rontott a tájpotenciált. Eddig 547 településnek a tájak és kultúrák sokszínűségét őrző természeti, kultúrtörténeti vagy esztétikai emlékeinek, egyedi tájértekéinek felmérése készült el.

Cél

• A természet- és tájvédelmi érdekek érvényesítése a terület- és településfejlesztés és -rendezés, az ágazati tervezés (különösen mező- és erdőgazdálkodás, vízgazdálkodás, közlekedés és egyéb műszaki infrastruktúra-fejlesztés) során, valamint az adó- és támogatáspolitikában.”

A fenti cél eléréséhez Kormányzati szintű feladatként megfogalmazzák, hogy:

• „Az OTT törvény alapján módosuló Budapest Agglomeráció Területrendezési Tervbe, valamint a megyei területrendezési tervekbe a fenntartható területihasználat, az országos ökológiai hálózat és a táj védelmét be kell építeni.

• A tájvédelmi szakhatósági munka fejlesztése, az érintett hatóságokkal való együttműködés erősítése.

• Az egyedi tájértékek katasztermelése, és az adatok folyamatos aktualizálása; az egyedi tájértékek jogszabályi védelménél biztosítása.
Az Európai Tájegyezménnyel összefüggő hazai feladatok ellátása, a hazai végrehajtási rendeleteinek kidolgozása.

Az Önkormányzatok szintjén pedig feladat:

• A megyei területi tervekben a természet- és tájvédelmi szempontok érvényesítése."

A dokumentum hivatkozik a harmadik fontos, országos szintű területrendezési anyagra, az ún. OTrT-re, azaz az Országos Területrendezési Tervre. Ennek egyes fejezeteit még gyakrabban módosítják, lényegében napra kész állapotban van.

Országos Területrendezési Terv 6 országos területfelhasználási kategóriát és 11 országos és 15 kiemelt térségi, illetve megyei övezetet határoz meg.

„Az ország szerkezeti tervére vonatkozó szabályok – Térségi területfelhasználási kategóriák

(1) Országos területfelhasználási kategóriák

a) legalább 1000 ha területű térségek:
 • aa) erdőgazdálkodási térség,
 • ab) mezőgazdasági térség,
 • ac) vegyes területfelhasználású térség,
 • ad) települési térség,

b) területi korlát nélküli ábrázolt térségek:
 • ba) vízgazdálkodási térség,
 • bb) építmények által igénybe vett térség,
 • bc) települési térség.

(2) Kiemelt térségi és megyei területfelhasználási kategóriák a következők,

a) legalább 50 ha területű térségek:
 • aa) erdőgazdálkodási térség,
 • ab) mezőgazdasági térség,
 • ac) vegyes területfelhasználású térség,

a) legalább 50 ha területű térségek:
 • aa) erdőgazdálkodási térség,
 • ab) mezőgazdasági térség,
 • ac) vegyes területfelhasználású térség,

b) legalább 10 ha területű térségek:
 • ba) városias települési térség,
 • bb) hagyományosan vidéki települési térség,

c) területi korlát nélkül ábrázolt térségek:
 • ca) vízgazdálkodási térség,
(3) A kiemelt térségek területrendezési terve a (2) bekezdésben megjelöltől eltérő, egyedileg meghatározott területfelhasználási kategóriáit is kijelölíthet a térség elsősorban funkciójának, illetve a kiemelés okának megfelelően.

Térségi övezeti szabályok – Térségi övezetek

(1) Országos övezetek:
• országos ökológiai hálózat,
• kiváló termőhelyi adottságú szántóterület,
• kiváló termőhelyi adottságú erdőterület,
• országos komplex tájrehabilitációt igénylő terület,
• országos jelentősebb tájképvédelmi terület,
• kulturális örökség szempontjából kiemelten kezelendő terület,
• kultúralszempontjából kiemelten kezelendő terület,
• országos jelentőségű tájképvédelmi terület,
• felszíni vizek vízminőség-védelmi vízgyűjtő területe,
• ásványi nyersanyag-gazdálkodási terület,
• együtt tervezhető térségek,
• kulturális örökség szempontjából kiemelten kezelendő terület.

(2) Kiemelt térségi és megyei övezetek:
• magterület,
• ökológiai folyosó,
• pufferterület,
• erdőtelepítésre alkalmas terület,
• térségi komplex tájrehabilitációt igénylő terület,
• kézműves tájképvédelmi terület,
• térrendezési terület,
• rendszeresen belvízjárta terület,
• nagyvízi meder,
• földtani veszélyforrás területe,
• vizekről kijelölt terület,
• szélerőzéséshez képességú kijelölt terület,
• honvédelmi terület".
A fenti dokumentumokból emeljük ki a védendő tájképi értékekkel rendelkező területeket, amely kategóriának a magyarázata a következő:

„Az országos területrendezési tervben megállapított, kiemelt térségi és megyei területrendezési tervekben alkalmazott övezet, amelybe a természeti vagy kulturális örökség adottságai alapján a kilátás-rálátás szempontjából védendő tájképpel, illetve tájképi elemmel rendelkező területek, valamint a védett történeti tájja nyilvánított területek tartoznak.”

Ha megnézzük a fejezethez tartozó térképet, felbukkan az a probléma, ami sokszor megnehezíti a tájföldrajz és a tájépítészet együttműködését, nevezetesen, hogy a tájképvédelmi területek közigazgatási határok szerint vanak kijelölve, ami tájföldrajzilag nyilvánvalóan csak durva közelítés a valósághoz.

4.13. ábra - OTT Országos jelentőségű tájvédelmi terület övezete

A tájtervezés lényegében egy felülről építkező hierarchia, a helyi tervezési célkitűzéseknek igazodni kell a kistérségi, megyei szintű elképzelésekhez, ezeknek illeszkednie kell a regionális dokumentumokhoz, és végül a régiók által megfogalmazott tervezési célok összhangban kell hogy legyenek az országos szinten kinyilvánított prioritásokhoz. Ezért is szükséges az előbb ismertetett országos anyagok folyamatos aktualizálása, hiszen ezek rendszerét kell hogy kövesse a kisebb területegységek – régiók, megyék, kistérségek, települések fejlesztési elképzelése.

A felsorolt országos dokumentumok mindegyike alapvetően fontos információkat tartalmaz a tájtervezés számára. Ezen kívül vannak még ágazati jellegű – pl. erdőgazdasági, turisztikai stb. – tervfajtáik is, amelyek ugyancsak országos hatókörű anyagok. (Ezekkel a továbbiakban itt nem foglalkozunk.)

Ha az országos szintről továbbblépünk, és megnézzük a regionális vagy megyei területrendezési, vagy környezetvédelmi programokat, azt találjuk, hogy a tájvédelmerre, tájtervezésre nézve egyre finomodik a kép.

A megyei szintű területrendezési programok közül kiválasztva pl. Békés megye kistérségi komplex környezetvédelmi programját (www.geo.u-szeged.hu/kornyprog/bekes_kornyprog.pdf) az látjuk, hogy az első nagy fejezetben, a környezeti állapot áttekintésében külön foglalkoztak a táj értékelésével. Ha fellapozzuk az
adott fejezetet ott már tájrehabilitáció címet olvasunk, de a cél, a feladat, az indokoltság és a megvalósítás egyes pontjai követik az országos tervek lebontásának logikáját.

Cél:
A megyére jellemző sajátos táji jegyek további elvesztésének megakadályozása és a tájesztétikai romlás megállítása, a sokszínű tájértékek megőrzése, visszaállítása.

Feladat:
• A tanyás gazdálkodási módot népszerűsíteni kell, a megfelelő infrastrukturális háttér biztosítása mellett.
• A nagyparcellás mezőgazdasági egységek feldarabolása lenne szükséges, úgy, hogy a termelés gazdaságos maradjon.
• A készülő mérnöki létesítményeket tájba illeszkedően kell megtervezni és létrehozni, a már létezők köré pedig facsoportokat, fasorokat kellene telepíteni.
• A bányagődröket rekultiválni kell: ha megfelelő minőségű vízutánpátás áll rendelkezésre, akkor tóként, mivel a megye szegény állóvizekben.
• A vizes területek további zsu gorodását, a holtágak szennyezését, feliszapoldódását meg kell állítani, végre kell hajtani a holtág-rehabilitációs programot.
• A vízzüket elveszített, kiszáradt holmedrek felélesztésére terveket kell készíteni (pl. Száraz-ér teljes szakasza, Cigányka-ér, Gyepes-csatorna stb.).
• A mezőgazdasági művelésre nem alkalmas földterületeket vissza kell gyepeíteni, így azok a szárazföldi ökofolyosó fontos részeivel válhatnak.

Indokoltság:
• A természetes növényzetet már csak foltokban megőrző, átalakított tájban egyre inkább a mérnöki létesítmények és a mezőgazdasági területek dominálnak. Az emberi hatások nem ritkán a kedvezőtlen természeti folyamatokat is felerősítik (pl. defláció, belvizek).

Leírás:
• A megye folyóktól távolabbi részei rendkívül szegény felszíni vizekben, ezért ezeken a helyeken a meglevő vizes területeket feltétlenül fenn kell tartani, rehabilitációjukat elindítani.
• A felhagyott vályogvető- vagy agyaggődröki miatt helyenként a táj roncsolt felszíni, ami az illegális szeméterakással együtt nagy problémát jelent.
• A tanyás gazdálkodási mód a biológiai diverzitás megőrzése mellett, mint alapvető táji egység is jelentős. Nagy gondot jelent a tanyák elhagyása, hagyományos életforma feladása, állattartás megszűnése, az újonnan megjelenő specializáció, intenzifikáció illetve a gazdálkodási ismeretek átalakulása.
• A megye minden része szegényes erdőkben, ezért telepítésűket az egész mélyben szorgalmazni kell.

Úgy gondoljuk, hogy az idézett részlet jól illusztrálja a középszintű táji kerettervek tartalmát, azok felépítését, konkrétizálási szintjét.

A területrendezési tervek legalább lépcsőjén a települési tervek vannak. Itt már előfordul, hogy a táji szint elmarad, hiszen egy csekély kiterjedésű külterülettel rendelkező település esetén a töredéktájak kezelésének, fejlesztésének kényszerre még nem általános igény. Esetekben a külterületen található védett természeti területekről szóló elképzeléseknél többenre ki is merült a tájtervezés. A kiterületeken pedig leginkább a zöldfelület gazdálkodásra szorítók oz a be nem épített területekkel történő foglalkozás. Kivétel olyan települések esete, amelyeknél a településen belül sem megkerülhető a táji látvány fontossága, pl. egy Esztergom, egy Eger, egy Süngy esetében. Ítt természetesen az attraktivitás megőrzése érdekében komoly tájvédelmi, tájrehabilitációs elképzelések, célok fogalmazódhatnak meg, amelyek ötvöződnek a zöldfelület gazdálkodási céljakkal.

Ennek illusztrálására idezzük Esztergom város településfejlesztési tervének alábbi részletét:
„Esztergom fenti történelmi és táji öröksége a város fejlődésének legnagyobb erőforrása.

Magyarország északi határán, a Dunakanyar kapujában 10 035 ha területen fekvő 29 500 lakosú Esztergom az ország egyik legegyenibb arculatú települése. Az egyéni arculat legmarkánsabb eleme

a történelmi, kulturális örökség, amely a tárgyi emlékekben, a város szerkezetében, a beépítési formákban, a város építészeti morfológiájában, de a szellemiségeben is tetten érhető,
a táji környezet, a város változatos domborzata, a Duna látépe és jelenléte, a Pilis-Visegrádi-hegység közvetlen közelése és az ezt a közeliséget erősítő, várost átszövő zöldfelület.

E kettő együttesen adja azt a sokszínű, több településrézre elkülönülő, de együtt élt várostestet, ahol szinte minden utcának, térnek sajátos hangulata van, és ahol vagy a természetes környezet adja a terek, utcák háttérét, vagy a város sziluettje, néha egy-egy markáns épület teszi egyedülállóan vonzóvá magát a tájat. Kevés város van, ahol a múlt tárgyi emlékei a természettel ilyen erőteljes szimbiózisban élnek” (Esztergom Város Településszerkezeti Terve 2006).

Küterületen

Esztergom településszerkezeti terve az 1995-ben jóváhagyott ÁRT-ben szereplő bővítéseken túl növeli a települési terület kiterjedését, de ezzel párhuzamosan a város ökológiai hálózatának erősítését, a rendszer ökológiai potenciáljának növelését tervezi

a táji sajátosságok, táji természeti értékek megőrzésével, fennmaradásuk biztosításával, zöldfelületi kapcsolatok erősítése, kiépítése által; a természeti, természetközeli területek rendszerbe szervezésével, ökológiai hálózat erősítésével, az ökológiai szempontból meghatározó (magas ökológiai potenciált biztosító) erdőgazdálkodási és korlátozott használatú mezőgazdasági (gyep, legelő, nádas) területek az Általános Rendezési Terv által tervezettől jóval nagyobb kiterjesztésével.

4.14. ábra - Tervezett területfelhasználás Esztergom városban
4.14 ábra Tervezett területfelhasználás Esztergom városban

„A város zöldfelületi rendszerének kialakítása érdekében

Ki kell jelölni a város közhasználatú zöldfelületeit (közparkok, közterek, közkertek hálózatát). Erősíteni kell az országos jelentőségű Duna menti ökológiai folyosó területét Duna-parti zöldterületek és erdők kijelölésével.(Ennek segítségével a folyó felőli városkép színvonalát javítani kell.)

Ki kell jelölni az országos jelentőségű ökológiai hálózat elemei (a Duna és a Pilishegység) közötti kapcsolatot biztosító – zöld folyosók helyeit (Csenke patak mentén, Szentgyörgymező belterületi határán, a Bocskoros káti árok vonalában).

A zöld folyosók területén a beépítést megakadályozni, a növénytelepítés elsődlegességét biztosítani kell. Új beépítésre szánt területen a város zöldfelületi hálózatához szerves kapcsolódó min. 5% területarányt biztosító közhasználatú zöldterületet kell kialakítani.

Töredéken kell a tájba illő növényzet megőrzésére, kerülni kell – elsősorban a Duna mentén – a táj felé idegen növényállomány telepítését., (Esztergom Város Településszerkezeti Terve 2006)

Részösszefoglalás

Részösszefoglalás

A hazai tervezési rendszerben a tájrendezés a területrendezési terveknek egy fajtája, amely az ökológiai és a tájesztétikai alapelvek mentén a táj teljesítőképességének, termelőképességének és esztétikai megjelenésének javítására irányul.

A tájrendezési tervek kidolgozása, felépítése a következő logikát követi:

- Tájvízsgálat = az adottságok felmérése
- Tájértékelés = lehetőségek áttekintése
- Tájprogram = a megvalósítható cél megfogalmazása
- Tervjavaslat = a kivitelezés leírása

A tájtervezés lényegében egy felülőről építkező hierarchia, a helyi tervezési célkitűzéseknek igazodni kell a kistérségi, megyei szintű elképzelésekhez, ezeknek illeszkednie kell a regionális dokumentumokhoz, és végül a régiók által megfogalmazott tervezési célok összhangban kell, hogy legyenek az országos szinten kinyilvánított prioritásokhoz.

Nálunk jelenleg a legfontosabb, országos szintet képviselő dokumentum az Országos Területfejlesztési Koncepció (OTK), amelyet az Országgyűlés fogad el és Országgyűlési Határozatként jelenik meg. Ennek feladata meghatározni a hosszú távú területfejlesztési célokat, irányelveket, továbbá alapinformációkat nyújt az általános és az ágazati területfejlesztések számára.

A harmadik fontos, országos szintű területrendezési anyag, az ún. OTrT, azaz az Országos Területrendezési Terv. Ennek egyes fejezeteit még gyakrabban módosítják, lényegében napra kész állapotban van.

A megyei szintű területrendezési programok többsége a környezeti állapot áttekintésében külön foglalkozik a táj értékelésével. Az adott fejezet a cél, a feladat, az indokoltság és a megvalósítás egyes pontjaiban követi az országos tervek lebontásának logikáját.

A területrendezési tervek legális lépéséjén a települési tervek vannak. Itt már előfordul, hogy a táji szint elmarad, pl. egy csokor kiterjedésű, nem különösebben attraktív külterülettel rendelkező település esetén a töredéktájak kezelésének, fejlesztésének kényszere még nem általános igény. A belterületen leginkább a zöldfelület gazdálkodásra szorítkozik a be nem épített területekkel történő, áttételesen tájtervezésnek nevezhető tevékenység.
Felhasznált irodalom

52

Created by XMLmind XSL-FO Converter.
5. fejezet - A mezőgazdasági hasznosítású tájak értékelésének követelményei (Lóczy D.)

1. A természetföldrajzi alapú földértékelés feladatai és eredményeiinek felhasználása

- biológiai regenerációs (ökológiai) potenciál (Bastian, O. 1992; Csúcść, B. 2009);
- ásványkincs-potenciál (MBFH 2011);
- vízpotenciál (Somlyódy L. 2011);
- energiapotenciál (Imre L. 2006; Energia Központ 2008);
- termőképesség (Szűcs I. 2005);
- éghajlati (légköri) potenciál (Varga-Haszonits Z. 2001);
- beépíthetőség (Meggyesi T. 2006; Nagy I. 2008);
- üdülési (rekreációs) potenciál (Dávid L. et al. 2007);
- hulladékelhelyezési potenciál (Takács A. 2010);
- környezet terhelhetősége (környezeterzékenység) (Kerényi A. 2007).

Az irodalmi hivatkozások nagyrészt Magyarországra vonatkozó összefoglaló értékelések. Az utolsóként említett potenciál különösen jól jelzi, hogy a különböző földtudományokban elért eredményeket felhasználhatóvá tegye a gyakorlati élet számára (Lóczy D. 2002). E cél elérése érdekében egységesíti, hierarchiába rendezzi, szintetizálja és közérthető formába (a leggyakrabban relativ értékrendben) mutatja be mindazt, amit a szaktudományok – jelenlegi fejlődési szintjükön – a terület használói számára a természeti potenciál(ok)ról mondani tudnak. A kutatás új tudományos eredményeket tárhat fel a természeti környezettel szemben támasztott igények terén, tehát a „keresleti” oldalon (pl. felmerülhet az igény egy új hasznosító termesztésére), még gyakrabban azonban a kereslet kielégítéséről, a különböző természeti potenciálokrol, tehát a „kipróbálásról” szerzünk további eredményeket (pl. a földtani kutatás pontosabb adatokat szolgáltat az ásványkincsek lelőhelyeiről, készleteireől, ill. a mezőgazdaság számára a terület ökológiai adottságait sikerül megbízhatóbben felmérni). A felhasználónak ugyan van valamilyen elképzelése annak a
A mezőgazdasági célú földértékelés

A mezőgazdasági terület a legtöbb országban a legnagyobb kiterjedésű földhasználati kategória, emellett az lakosság élelmiszergyárását és élelmiszerellátását stratégiai kérdés, ezért a mezőgazdasági tájak termőképességének és termesztezhetőségének értékelése, a termelési hatékonyság és a természetes erőforrások fenntartása szempontjából a legfontosabb. Az új természetes és infrastruktúrázott tájak központi szerepét tölti be az Észak-Amerikában elismert és elfogadott képesség. Az érdekesség, hogy a természeti erőforrások és a tájgazdálkodás feladata (Ángyán J. 2003). Az intenzíven művelt mezőgazdasági tájakat tehát nem csak termőképességük alapján kell megélni, hanem aszerint is, mennyire töltik be a tájak egyéb, a tájgazdálkodás és a természeti képességeket.
A mezőgazdasági hasznosítású tájak értékelésének követelményei (Lóczy D.)

(szenáriókat). Megfogalmazták azokat a döntési (gazdasági, társadalmi, környezeti) ismérveket, amelyek a preferenciák meghatározásának az alapja lehetnek. Többismérves mátrix (multicriteria matrix) segítségével értékeltek az alternatív megoldásokat az egyes ismérvek, majd páros összehasonlításban valamennyi, különbözőképpen súlyozott ismérv szerint is. A kétféle döntéSELŐKészítő eljárás kombinálásával a táj funkcióit szem előtt tartó, általánosan alkalmazható módszert javasolnak a tájhasználati konfliktusok megoldására (Krönert, R. et al. 2001).

A hazai felfogás szerint (Rétvári L. 1983) a mezőgazdasági területek termőképességét három alapvető tényező határozza meg:

1. a termőhelyek agroökológiai potenciálja (tehát milyen helyi adatok milyen növények termesztését teszik lehetővé és milyen színvonal);
2. a növények és az állatok genetikai potenciálja (tehát a fajtanemesítés által milyen mértékben közelíthetők a termesztett növények és a tenyésztett állatok igényei az agroökológiai potenciálhoz);
3. a földhasználat társadalmi, gazdasági és technológiai feltételei (tehát milyenek a természeti potenciál kiaknázásának egyéb körülményei).

Világosan kitűnik, hogy a három tényezőcsoport szorosan összefügg egymással. Nyilvánvaló az is, hogy a különböző tudományterületekhez tartozó feltételrendszerek különböző arányban javíthatók: mégpedig 1-től 3-ig egyre fokozódó mértékben. Bizonyos egysugátságoság is megfigyelhető: először a mezőgazdaságban a melioráció hagyományos eljárásai kaptak nagy hangsúlyt, napjainkra tért nyert a géntechnika, ugyanakkor kibontakozóban vannak a – legnagyobb tartalékozat jelentő – tudományos üzemszervezés, modellekben alapuló gazdálkodás, a precíziós mezőgazdaság módszerei, amelyek a 21. században általánossá válnak.

2.1. Paraméterrendszerű megközelítések

Korábban a földértékelés a nemzetközi irodalomban (McRae, S.G. – Burnham, C.P. 1981) elsősorban talajértékeként alapuló kategorizálást jelentett. A Természettudományi és Mezőgazdasági Minisztérium felügyelete alatt újra felmondott, hogy ezek a rendszerek inkább a föld alkalmazását és termelését tekintik, mint a föld által értékelhető termőföld minőségét kifejező értékszámot. Az ilyen megközelítés jobban megfelel a nagy területi felbontású, korszerű térinformatikai eszközökkel végrehajtott földértékelés követelményeinek is.

A mindennapi életben a föld értékelésének ún. közvetlen módját szokás alkalmazni. Az ilyen módszerek közvetlenül a termésedényekre alapulnak, mint pl. az elsőször 1875-ben bevezetett, majd a rendszerváltozás után újra hivatalosan elismert aranyakorona-rendszer, amelynek kidolgozói a termőföld értékmerőjének az elérhető tisza kataszteri jövedelmét tekintették. Mivel azonban a termésedények – az időjárást és a társadalmi-gazdasági-agrotechnikai viszonyok változása miatt is – évről-évre ingadoznak, létjogosultsága van a közvetett földértékelő eljárásként alakítják ki a termőföld minőségét kifejező értékszámot. Az ilyen megközelítés jobban megfelel a nagy terület felbontású, korszerű térinformatikai eszközökre végrehajtott földértékelés követelményeinek is.

A millénni életben a föld értékelésének új, közvetlen módját szokás alkalmazni. Az ilyen módszerek közvetlenül a termésedényekre alapulnak, mint pl. az elsőször 1875-ben bevezetett, majd a rendszerváltozás után újra hivatalosan elismert aranyakorona-rendszer, amelynek kidolgozói a termőföld értékmerőjének az elérhető tisza kataszteri jövedelmét tekintették. Mivel azonban a termésedények – az időjárást és a társadalmi-gazdasági-agrotechnikai viszonyok változása miatt is – évről-évre ingadoznak, létjogosultsága van a közvetett földértékelő eljárásként alakítják ki a termőföld minőségét kifejező értékszámot. Az ilyen megközelítés jobban megfelel a nagy terület felbontású, korszerű térinformatikai eszközökre végrehajtott földértékelés követelményeinek is.
2.1.1. A termőképesség minősítése az ökológiai (termőhelyi) alkalmasság alapján

A növények alapvető ökológiai igényei bizonyos komplex környezeti tulajdonságokra (pl. jó vízellátottság – Lőczy D. 2001) irányulnak, amelyeket nehéz, sőt a legtöbb esetben nem lehetetlen egyetlen mérsékkel megragadni (FAO 1976). A földértékelés gyakorlatában egyszerű környezeti tulajdonságokból („land characteristics”, LCs – a vízellátottság esetében pl. a termőréteg vastagsága, a talaj szövete, a csapadékmennyiség, a talajvízszint mélysége) állíthatjuk össze, amelyek már mennyiségileg leírhatók, egyszerű paraméterekkel jól kifejezhetők. A FAO irányelvei szerint a célként kitűzött földhasználati típusokból (land utilization types, LUT) levezetett födhasználati követelmények (land utilization requirements, LUR) mint „keresleti” oldal és a komplex környezeti tulajdonságok (land qualities, LQs) mint „kínálati” oldal összevetése a földértékelés lényege (5.1. ábra).

5.1. táblázat - A növénytermesztésre való ökológiai alkalmasság meghatározásához feltétlenül szükséges környezeti paraméterek (Lőczy D. 1989)

<table>
<thead>
<tr>
<th>I. Domborzat</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lejtőség</td>
<td></td>
</tr>
<tr>
<td>Lejtőkitettség</td>
<td></td>
</tr>
<tr>
<td>Horizontális tagoltság</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>II. Éghajlat</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Havi középhőmérsékletek (márciustól októberig)</td>
<td></td>
</tr>
<tr>
<td>Havi napfénytartamok (márciustól októberig)</td>
<td></td>
</tr>
<tr>
<td>Havi csapadékköszégek (márciustól októberig)</td>
<td></td>
</tr>
</tbody>
</table>
III. Talaj

A talaj genetikai típusa
Fizikai féleség
Humuszállapot
Termőréteg-vastagság
Talajképző közet
A talajvízütkör mélysége
Kémhatás és mészállapot

5.1. táblázat A növénytermesztésre való ökológiai alkalmasság meghatározásához feltétlenül szükséges környezeti paraméterek (Lóczy D. 1989)

A paraméterrendszerű felmérésekkel szemben támasztott legfontosabb követelmények:
1. a feldolgozott paraméterek a lehető legjobban feleljenek meg a növények ökológiai igényeinek;
2. a paraméterek – fontosságuk szerint – alkossanak hierarchikus rendszert;
3. minél kevesebb legyen a paraméterek közötti átfedés, a szükségtelen ismétlódés (elkerülhető legyen a „többszörös értékelés” veszélye);
4. formai szempontból felejjen meg a számítógépes tárolás, feldolgozás, kiértékelés követelményeinek.

Legújabban egyszerű, de részletes, soktényezős adatbázisra épített, paraméterrendszerű gyakorlati földminősítési módszert közölt Dömsödi János (2011).

2.2. Földértékelés síkvidéken

A természettőlfordjazi megközelítésű, a domborzatminősítési irányzaton alapuló, az MTA Földrajztudományi Kutató Intézetében, Göczen L. (1980, 1984) irányításával kidolgozott eljárásokat (Lóczy D. 1989) elsősorban dombvidéki területeken próbálták ki. Emöggőt az a meggondolás húzdódott meg, hogy igyekeztek kihasználni a domborzatról rendelkezésre álló topográfiai térképekről, ill. később a digitális teremmodellerekről származtatható nagy adattömeget. A legjobb minőségű szántóterületek azonban az alföldeken találhatók, ahol módosított eljárást kell alkalmazni, hiszen a dombvidékektől eltérően pl. a felszín lejtésének szöge és iránya nem játszik jelentős szerepet, ezért ezekre a paraméterekre itt gyakorlatilag nincs is szükség. A domborzat szerepe ugyanakkor a folyami ártereken, hordalékkúpon közvetlen módon, de igen markánsan megmutatkozik: a tengerszint feletti magasság 1-2 m-es szintkülönbségei is jól kirajzolódnak a talajképző közetek minőségének megváltozásában (lösz- vagy homokborítás), a talajvíz mélységében, a talajtípusok elterjedésében (réti és réti öntéstalajok megjelenése) stb. (Lóczy D. – Szalai L. 1999). A tengerszint feletti magasságot tehát nem mint domborzati tényezőt célszerű figyelembe venni, hanem a terület tájókológiai mintázatát végső soron meghatározó paraméternek kell tekinteni. A mintázat síkvidékén a legközvetlenebbül a talajtípusok eloszlásában tükröződik, de ezt csak talajvizsgálati helyek sűrűbb hálózata alapján lehetne feltételezni. A határokat úgy lehet pontosabban megvonnani, ha a domborzati formákhoz igazítjuk őket (ami a talajtani térképezésben régen elfogadott eljárás).

A feltétlenül szükségesnek ítélt környezeti tulajdonságokból épült föl a minősítés adatbázis a. Az adatházis létrehozásához meg kellett még határozni annak felbontását, tehát az adatgyűjtés „elemi cellájának” a méretét. A környezeti adottságokat és az adatforrásokat mérlegelve kellett optimalizálni az adattömeg „sűrűségét”. A jelen alkalmassági vizsgálatban a 100 ha-os alapegységek (1x1 km-es négyzetek) tüntek a legmegfelelőbbnek.
2.3. Esettanulmány: földértékelés Beremend környékén

5.2. ábra - Baranya megye átnézetes növénytermesztésre való alkalmassági térképe

A Beremend környéki értékelésbe is azokat a haszonnövényeket igyekeztetem bevonni, amelyeket a vizsgált tájon a legnagyobb földterületen termesztetek (5.2. táblázat).

5.2. táblázat A Beremenden működő gazdasági társaság (a termelőszövetkezet utódszervezetéhez) vetésterületének növényenkénti megoszlása (1998)

5.3. ábra - A Beremenden működő gazdasági társaság (a termelőszövetkezet utódszervezetéhez) vetésterületének növényenkénti megoszlása (1998)
A mezőgazdasági hasznosítású tájak értékelésének követelményei (Lőczy D.)

<table>
<thead>
<tr>
<th>növény</th>
<th>vetésterület (ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kukorica</td>
<td>626</td>
</tr>
<tr>
<td>őszi búza</td>
<td>353</td>
</tr>
<tr>
<td>szója</td>
<td>189</td>
</tr>
<tr>
<td>különbőző gyógynövények</td>
<td>151</td>
</tr>
<tr>
<td>őszi árpa</td>
<td>144</td>
</tr>
<tr>
<td>lucerna</td>
<td>140</td>
</tr>
<tr>
<td>olajrepe</td>
<td>124</td>
</tr>
<tr>
<td>silókukorica</td>
<td>110</td>
</tr>
<tr>
<td>zöldség (sárgarépa, gyökér)</td>
<td>49</td>
</tr>
<tr>
<td>takarmánykeverék (bükköny + zab, árpa vagy rozs)</td>
<td>47</td>
</tr>
<tr>
<td>vetett fű</td>
<td>7</td>
</tr>
<tr>
<td>cukorépe</td>
<td></td>
</tr>
<tr>
<td>összes szántóterület</td>
<td>1994 óta nincs</td>
</tr>
</tbody>
</table>

Az ökológiai igények szerinti értékelésben figyelembe vettük a FAO irányelveiben, általános földművelési szempontú minősítéshez javasolt alkalmassági táblázatokat (5.3. táblázat).

5.3. táblázat A talajviszonyok FAO rendszerű alkalmassági táblázatának részlete (értékelés általános szántóföldi növénytermesztési szempontból – Sys, C. 1985 nyomán)

5.4. ábra - A talajviszonyok FAO rendszerű alkalmassági táblázatának részlete (értékelés általános szántóföldi növénytermesztési szempontból – Sys, C. 1985 nyomán)

Mivel a tényezőnkénti részpontszámok egyszerű, növényenkénti összeadása nem tükrözné valós ökológiai igényeit, a lényegesebb tulajdonságok többszörös beszámítására, azaz valamennyire fokozottá súlyozást építünk be a rendszerbe: az elsőrendűen fontos paraméterek esetében a négyes, a másodrendüknél a kettős szorzójú. Az agrónomiai szakirodalom tanulmányozásából elég egyértelműen kiderült, hogy a következő paramétereket kell súlyozottan figyelembe venni:

- az őszi búza esetében elsősorban a talaj genetikai típusát, másod sorban a júniusi és a július talajegészetet, másod sorban a júliusi és az augusztusi középhőmérsékletet;
- a lucerna esetében elsősorban a talaj genetikai típusát, valamint körhőmérsékletét és mészállapotát;
- a napraforgó és a cukorrépa esetében a talaj genetikai típusát;
- a szója esetében a szeptemberi középhőmérsékletét;
- az olajrepce esetében a júniusi középhőmérsékletét.

A súlyozás megtervezésekor tehát mutatott voltunk a szárazságtűrő fajták fokozottan terjedésére, ill. a vizsgált terület viszonylag jó talajvímellátottsága, ezért a csapadékértékek súlyozását minimálra szűkítettük.

Adatforrások

A határszéli terület minősítését megneheztíti, hogy természeti viszonyairól igazán friss térképek nem állnánk rendelkezésre. A területen térképezett agroökológiai tényezőknek az egyes növények számára megbecsülhető értékét a következő táblázatok segítségével lehet megállapítani (4–10. táblázat). A kiválónak minősített paraméterértékek jele: +++++; a természetű erősen korlátozókké: +. Ahol a környezeti feltételek egyáltalán nem teszik lehetővé a növény termesztését (a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állapot, tehát az adott földhasználat reális költséghatékony a FAO útmutatásai szerinti N1 állap...
Mivel viszonylag kis kiterjedésű és sík, tehát azonos mezoklimájú területről van szó, a Beremendre vonatkozó éghajlati adatsorokat (intervallumokat) az egész vizsgált területre érvényesnek fogadtuk el. Az éghajlat-értékelő táblázat (5.5. táblázat) feladata, hogy sokéves átlagok tekintetében „elhelyezze” a vidéket a magyarországi viszonyok skáláján.

5.5. táblázat Az éghajlati paraméterek minősítése

<table>
<thead>
<tr>
<th>terhelési lejtőkategória (%)</th>
<th>másodlagos lejtők. (%)</th>
<th>homokozott tárgyaltság (m²/ha)</th>
<th>lekorona</th>
<th>övet kalázas</th>
<th>szőja</th>
<th>huzska</th>
<th>napraforgó</th>
<th>olaj-repe</th>
<th>cukorrépa</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-5</td>
<td><1000</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>G-5</td>
<td>1000-2000</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>G-5</td>
<td>>2000</td>
<td>++</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>G-5</td>
<td>5-12</td>
<td><1000</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>G-5</td>
<td>5-12</td>
<td>1000-2000</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>G-5</td>
<td>5-12</td>
<td>>2000</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>G-5</td>
<td>>12</td>
<td><1000</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>G-5</td>
<td>>12</td>
<td>1000-2000</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>G-5</td>
<td>>12</td>
<td>>2000</td>
<td>++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

5.6. ábra - Az éghajlati paraméterek minősítése

A vizsgált terület talajtípusai a barna erdőtalajok, a réti, ill. az öntéstalajok csoportjába tartoznak. Elsősorban fizikai féleségük (szövetük) szerint alkotnak olyan változatokat, amelyek termékenysége is némileg eltérő lehet (5.6. – 5.10. táblázat). A talaj szövete befolyásolja még a növények víz- (és tápanyag-)felvételét, ezért a talajvízütikőr tartósan előfordul, legkisebb mélységét is ennek függvényében kell megítélni. A gyökérfejlődésben és a vízvaktározásban a talajképző közözet is szerepet játszik, ezért a területen megtalálható főbb csoportjait külön minősítjük. A tápanyag-ellátottságot és a talajszerekzet jellemező legfontosabb paraméter a humuszállapot, amely a humuszos réteg vastagságából és humusztrattalmából tevődik össze. A gyökérzet elhelyezkedése szerint az egyes termesztett növények ugyan különböző vastagságot humuszreteget igényelnek, de az eltérés nem jelentős; így az egyszerűség végett növényenként nem teszünk különbséget a
A mezőgazdasági hasznosítású tájak értékelésének követelményei (Lóczy D.)

humuszállapot értékelésében. A talaj kémhatása több kultúra eredményes termeszthetőségét megszabja, ezért – a mészállapottal, tehát a szénsavas mész megjelenésének mélységével együtt – szintén bevonjuk az értékelésbe.

5.6. táblázat A talajtípusnak és a talaj fizikai féleségének értékelése

5.7. ábra - A talajtípusnak és a talaj fizikai féleségének értékelése

<table>
<thead>
<tr>
<th>talajtípus</th>
<th>füzes féleség</th>
<th>kukoricája</th>
<th>őszibabosz</th>
<th>szőrű</th>
<th>lucerna</th>
<th>napszag megjelenés</th>
<th>olaj-érpe</th>
<th>cukorépe</th>
</tr>
</thead>
<tbody>
<tr>
<td>csemőjomba bamba erdőtalaj</td>
<td>agyagos vílyog</td>
<td>++++</td>
<td>+++++</td>
<td>+++</td>
<td>+++++</td>
<td>+++++</td>
<td>+++++</td>
<td>+++++</td>
</tr>
<tr>
<td>csemőjomba bamba erdőtalaj</td>
<td>vílyog</td>
<td>+++++</td>
<td>+++</td>
<td>+++</td>
<td>+++++</td>
<td>+++++</td>
<td>+++++</td>
<td>+++++</td>
</tr>
<tr>
<td>barna erdőtalaj</td>
<td>agyagos vílyog</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>barna erdőtalaj</td>
<td>vílyog</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>réti csemőjomba</td>
<td>vílyog</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>réti csemőjomba</td>
<td>homokos vílyog</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>réti talaj</td>
<td>vílyog</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>réti talaj</td>
<td>agyagos vílyog</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>réti talaj</td>
<td>vílyog</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>réti erdőtalaj</td>
<td>vílyog</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>értés réti talaj</td>
<td>homokos vílyog</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>humuszos értékelése</td>
<td>homokos vílyog</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

5.7. táblázat Humuszállapot értékelése (együtt valamennyi növényre)

5.8. ábra - A humuszállapot értékelése (együtt valamennyi növényre)

<table>
<thead>
<tr>
<th>humuszos réteg vastagsága (cm), humusz tartalom (%)</th>
<th><20</th>
<th>20-40</th>
<th>40-60</th>
<th>>60</th>
</tr>
</thead>
<tbody>
<tr>
<td><1</td>
<td>++</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-2</td>
<td>+++</td>
<td>+++</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>>3</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

5.8. táblázat A talajképző kőzet és a termőréteg-vastagság értékelése

5.9. ábra - A talajképző kőzet és a termőréteg-vastagság értékelése
5.9. táblázat A talajvízviszonyok értékelése (a talajvíztükör mélysége, m)

5.10. ábra - A talajvízviszonyok értékelése (a talajvíztükör mélysége, m)

5.11. táblázat A növényenkénti ökológiai alkalmasság Beremend környékén a dél-dunántúli regionális maximum százalékában
Igaz ugyan, hogy a százalékos alkalmassági értékek szórása nem túlságosan nagy, három csoport mégis világosan kirajzolódik: 90% feletti alkalmassággal kiemelkedik a napraforgó (térképi jele: n), ezt követik a valamivel 80% feletti értéket mutató olajrepace (r), kukoricá (k), cukorrépa (c) és szója (s), míg a földterület a legkevésbé lucerna (l), öszi búza és árpa (együttesen: b) termesztésére alkalmas. Ehhez társulnak a 0 - 9 közötti skálán megjelölt alkalmassági értékek, mindig a növénycsoport kódja után feltüntetve. Az egyes növények természetesen nem zárják ki egymást, belőlük tervezhető az optimális vetésförgő.

Az ökológiai alkalmasság térképi ábrázolása

Beremend környékének (pontosabban a Siklós nagyfalú-Ivándárda és a déli országhatár közötti terület) agroökológiai értékelése – a fenti meggondolások szem előtt tartásával – két lépésben történt:

1. áttekintő értelkelő térkép készült a kilométerhálózat alapján meghatározott 100 ha-os négyzetekre (a legalább 80%-ban beépített, erdővel borított, a bányászkodás miatt talajtakarójától megfosztott felszínek figyelmen kívül hagyásával);

2. majd a terület geomorfológiai térképén szereplő, homogénnek tekintett formacsoportok lettek a – különben teljesen azonos módon lefolytatott – értékelés alapegy ségei (5.3. ábra).

5.12. ábra - Beremend környékének növénytermesztésre való alkalmassága (Lóczy D. 2004)

5.3. ábra Beremend környékének növénytermesztésre való alkalmassága (Lóczy D. 2004). Kategóriák: 1 = kiváló minőségű termőhelyek körzetei: 1a = nkl9bc8rs7; 1b = nk9lbrc8s7; 1c = kln8bec7r6; 1d = kl8bnc7sr6; 2 = jó minőségű termőhelyek körzetei: 2a = lkn7rb6c5; 2b = lnk7srb6c0; 2c = lkn7sr6b4c0; 2d = lkn7s6br5c4; lk7ns6br5c4; kl7ns6br5c4; 3 = gyengébb adottságú termőhelyek: 3a = lkns6brc5c4; 3b = ln6kn5bc0; 3c = kn6lrs5br3c0; 3d = lk6n5rsb3c0; 4 = erdő, mocsár; 5 = beépített terület. A kódok magyarázatát ld. a szövegben

Az első lépés eredménye, a kilométerhálóra készült értelkelő térkép a területi arányokról természetesen csak nagyon hozzáfvetőleges információit nyújtott, hiszen a négyzetéháló minden egységében csak az egyes tényezők uralkodó értékeit lehetett feltüntetni és kiértékelni. A második lépcsős értékelésben viszont bizonytalansági tényező a geomorfológiai egységek elhatárolásának pontossága, ill. az a tény, hogy a talajtulajdonságok nem követik pontosan ezeket, széles átméretű sávok alakulhatnak ki. A geomorfológiai térképezés hibahatára 1:100 000-es méterarányban már 20-25% is lehet, de a domborzati és a talajviszonyok
A mezőgazdasági hasznosítású tájak értékelésének követelményei (Lóczy D.)

eloszlásának különböző jellegéből adódó területi eltéréseket egyáltalán nem lehet becsülni (különösen a talajtípus meghatározása következtében, amelyet egyébként is nemi szubjektivitás terhel).

A vizsgált területen belüli eltérések (3. ábra) elsősorban a talajviszonyoknak, azon belül is a kötöttség helyi eltéréseinek köszönhetők. Figyelembe kell venni, hogy a Dráva öntésterületén a talajképző kőzet szemcsétmérője és a rajta kialakult féltalajok kötöttsége eléggé szeszélyesen változik, aminek részletes bemutatását a felmérés felbontása nem tette lehetővé.

Mivel a százáktéko alkalmassági értékek tízfokozatú skálára átszámitva csupán négy kategóriába kerültek: 6, 7, 8 vagy 9, az itt közölt, egyszerűsített összesítő térképen ezek a rangerszámok szerepelnek a növények kezdőbetűi mögött. A legnagyobb területi kiterjedésű csormozom barna értelés felényen változik, aminek részletes bemutatását a felmérés felbontása nem tette lehetővé.

Távlatok

Mint az egyik természeti potenciál kiaknázása általában mérsékelő a többi felhasználásnak lehetőségeit, minden földértékelési térkép, az itt közölt és akkor alkalmas a földhasználat tervezésére, ha más szempontú földértékelés eredményével is összevetjük. Ebben az esetben a következő szempontoknak lehet gyakorlati jelentősége a hét növény természetesére jóval kisebb.

Közönségtudomány

A tanulmány az OTKA által a T 30 859. sz. pályázat keretében támogatott, a mezőgazdasági tájak és tájgazdálkodási alapozására irányuló kutatás egyik terméke. A Kreybig-féle kéziratos talajismereti térkép rendelkezésre állt. Az itt közölt vizsgálatok az ugyanazon alapján kerültak.

Felhasznált irodalom

A mezőgazdasági hasznosítású tájak értékelésének követelményei (Lóczy D.)

6. fejezet - A termőképesség értékelési módszerei
Magyarországon (Lóczy D.)

1. A termőképesség értékelésének alapfogalmai és irányzatai

A FAO szerint a föld az ökoszféra adott területhez tartozó részlete, „amelynek jellemzői magukba foglalják az adott felszínaráb felett és alatt elhelyezkedő bioszféra valamennyi, viszonylag stabil vagy kiszámítható ciklusokat mutató tulajdonságait, ideértve a légkört, a talajt, a felszínközi geológiai és hidrológiai viszonyokat, a növény- és állatpopulációkat, valamint a múltbeli és jelenlegi emberi tevékenység következményeit, mégpedig olyan mértékben, amennyire ezek a tulajdonságok lényegesen befolyásolják a föld ember általi használatát” (FAO 1976; ezen munka 5.2 fejezete).

A (mező- és erdőgazdasági) termőképesség a leggyakrabban értékelt természeti potenciálat. A termőképesség értékelésében tehát a természeti tényezők, elsősorban a talajviszonyok (Dorronsoro, C. 2000) jelentik az alapot.

A természeti potenciálak – csakúgy, mint az erőforrások – történelmi kategóriáik. Az emberi társadalom fejlődésével körül általában bővül, bár vannak kivétel esetek is. Az ásványi nyersanyagok közül a neolitikumban pl. az obszidían összehasonlíthatatlanul értékesebb volt, mint bármely érc, manapság viszont az ásvány- és kőzetgyűjtőkön, ill. az emléktárgy-faragó művészek kivül más alig érdeklődik iránta.

A természeti potenciál minősítésekor több fontos szempontra is érdemes igazolni:

A potenciált végül is nem az egyes erőforrások, hanem adottságaiak sajátos kombinációja, tehát kölcsönhatásaik (az ökoszisztémán belüli szerepek) alkotják. (Ezért hozott csupán részeredményeket a „domborzatminősítés”, a

Egy-egy potenciál tehát több erőforrashoz kapcsolódhat. (A többszörös értékelés veszélye minden módszer esetében fennáll, bár a súlyozáshoz tudatosan is felhasználható.)

Az értékelendő tulajdonságok összefüggéseit modelléssel részletesen fel kell tární, majd integrálni kell őket. Egyes erőforrások szükösen fordulnak elő, birtokba vehetők, ezért áruk van, másoknak viszont nincs, és az értékek gyakran nagyon nehezen becsülhető meg. Világos tehát, hogy a csak természettudományos megközelítés nem elegendő, amint az egyedül közgazdasági szempontokat figyelembe vevő értékelés sem vezet célra.

A különböző országokban kialakult földértékelési módszerek három irányzat valamelyikébe sorolhatók be (Verheye, W. V. 1991):
1. talajtérképek értékelése;
2. komplex agropedológiai felmérések;
3. integrált földértékelés.

Az integrált földértékelés két szakaszból, termőhelyi minősítésből és a ráépülő közgazdasági értékelésből áll, ahogyan a FAO szorgalmazta különböző irányelveiben (FAO, 1976, 1997).

2. Földértékelés vagy földminősítés?

Magyarországon a földértékelés megnevezést hagyományosan szűkebb értelemben használták: a 70-es, 80-as években csupán a mezőgazdasági célú tájértékelésre vonatkozott, az alábbi definícióval (Fórizs J. 1985): „a termőföld mint a mezőgazdaság alapvető termelőeszköze értékének kifejezése pénzben, naturális mutatóval vagy viszonyszámmal”.

Az „értékelés” és a „minősítés” megjelölések nem pontos szinonímák (Pécsi M. 1979). Az érték szigorúan véve általában pénzbén kifejezett kategória. A természeti potenciáloknak csak egy része (pl. az ásványkincs-készletek) fejezhető közvetlenül pénzbén, az emberek nem anyagi jellegű, pl. egészségügyi (szennyezésmentes lakókörnyezet), esztétikai (a táj látványa) szükségletei nem. A közgazdasági értékelés igyekszik olyan helyettesítő módszereket találni, amelyekkel ezek a homlokegyenest eltérő természetű „értékek” is összemérhetővé váljanak.

Az értékeléssel szemben a minősítés szűkebb értelmi fogalom, inkább csak minőségi összevetés, relatív értékelés, rangsorolás. Az 1970-es évek végén a magyar szakirodalomban a környezetminősítés kifejezést használták azokra az eljárásokra, amelyek Pécsi Mártonnak (1979) a teljes emberi környezetről alkotott felfogásán alapultak. Pécsi M. (1979) szerint a környezetminősítés ..., a teljes földrajzi környezet integrált potenciáljának a minősítése, a környezeti alrendszerek (a természeti, a mesterséges, a társadalmi-gazdasági, ill. a politikai-kulturális környezet) ágazati potenciáljainak külön-külön, jelentőségük szerint végrehajtott értékelése abból a célból, hogy a környezet teljesítése valamennyi feladatát, ugyanakkor használatának költségei a lehető legalacsonyabbak maradjanak”.

A termőképesség értékelési módszerei Magyarországon (Lóczy D.)
Ezt a fogalmat ilyen tág értelmezésben igyeksztek használni a magyar szerzők angol nyelven megjelent értelemezéseikben is. A környezetminősítés fogalmának pontos angol megfelelője ("environmental assessment") azonban a nemzetközi szakirodalomban csak igen ritkán lehetséges fel. A legtöbb esetben helyette is értékelt (land evaluation) szerepel. Maga a minősítés szó a magyarban is félreértő, hiszen pl. már egy táj megnevezése is sőt a földrajzi helyzetet is, amelyet egyesek már önmagában is természeti potenciálnak tekintenek (Tóth M. 1988). Bár a minősítés megjelölés a magyar szóhasználatban talán jobban kifejezett az alkalmazott eljárás lényegét, a természeti potenciálak jelentőségének megbeoszlást nemzetközileg begett megnevezéssel földértékelésnek célszerű hivni (Lóczy D. 2002).

3. A földértékelés módszertani nehézségei

A nemzetközi szakirodalomban gyakran hangsúlyozzák (Beek, K. – Bennema, J. 1972 – p. 12), hogy „a földet csak valamilyen jól meghatározott célra szabad minősíteni, hiszen abszolút és általában vett földérték nem létezik". A cél megjelölésének ajánlott módszere a hierarchikus „szűrés”, tehát a feladat többlépéses szűkítése, a legáltalánosabb cél fokozatos pontosítása (Lóczy D. 2002).

A tájak egyedi jellegéből fakad, hogy az egyes környezeti tulajdonságok a táji keretekből kilépve – már országos szinten is, nemzetközi méretekben pedig még inkább – másképpen érvényesülnek. A Föld távoli tájain is jelentős szerepet játszanak, amelyek a mezőgazdaság szempontjából kiemelkedő jelentősége van (Lóczy D. 2000).

Egyes tényezők nem csupán a termés mennyiségére, hanem minőségére is hatnak. A mezőgazdasági termények értékesítődésének döntő szempontja minőségük. Ennek ellenére általános jelenség, hogy a szakirodalom pl. az agrometeorológiai elemeknek csak a terméshozamra gyakorolt, mennyiségi hatásával foglalkozik, a minőséget befolyásoló szerepeket elhanyagolja (Varga-Haszonits Z. 1987).

A jelentőségükben eltérő tényezők arányos figyelembevételének kézenfekvő eszköze a súlyozás (lásd 6.2 fejezet). Hátránya, hogy alkalmazásakor a szubjektív elemeket nem lehet tökéletesen kiküszöbölni. A szubjektivitás mérséklésének gyakran a súlyozás szerepet játszott, amely az egyes hatótényezők milyen mértékben hatóbbak zömmel határozható meg (Kertész Á. 1997), tehát mekkora "súlyt" célszerűne kijuttatni.

A földértékelés eredményét nem egyszerű ellenőrizni. A terméshozamokkal történő összehasonlítás azt sem megfelelő módban az ellenőrzésnek, mert a hozamokra számtalan, nehezen megragadható társadalmi-gazdasági hatás (gazdasági szerkezet, agrotechnikai színvonal) is "rárakódik".

4. A földminősítés kezdetei Magyarországon

Hosszú út vezetett a földminőség kifejezésére irányuló kezdeti törekvésektől a napjainkig Magyarországon alkalmazott földminősítési módszerekig. A fejlődés több vonalon párhuzamosan ment végbe: a talajtani szakemberek által végzett talajtérképezés, a természetföldrajzban kibontakozott komplex tájkutatás és a közvetlenül gyakorlati célú tájrendezés eljárásainak tökéletesedése által.

A magyarországi termőföldek minőségének nyilvántartására igen korán, még a tudományos igényű talajtérképezés megszületése előtt kísérletet tettek. A földminősítés az II. József elrendelte talajtani tiszta jövedelem 20%-a, ill. (az 1924. évi módosítás után) 25%-a. A rendszer bevezetésekor a hüvelyes tájakat a kataszteri és a földadó keretek szabályai szerint felismerték, amelyek a földminősítés megbérlését általánosan elfogadott szabálysorrend szerinti értékelésre határoztak. A megfelelő módosításokkal a földminősítés feltárható, amelyeket a természetföldrajzi övekben és a tájak közötti összekapcsolódásban történnek (Lóczy A. 2000).

A föld termőképessége (a művelés, a talajerózió és savanyodás vagy a meliorációs beavatkozások hatására) az ország különböző részein eltérően változott. Az egyes művelési ágakban alkalmazott művelési módok és az agrokémiai és talajismereti beavatkozások hatására az ország területén különböző termőképességváltozásokat tapasztaltak. Az ország területén kívül a föld vámvételének, a földtőkejáradék megállapításának rendszeresítésének fontossága egyre nagyobbra vált. A legtöbb országban a föld hasznosítására és a földminőségének megközelítésére rendkívül fontos módszerek és berendezések fejlesztése alakult ki.

Nyilvánvaló hiányosságai ellenére a rendszer a maga korában igen fejlett, és a folyamatos fejlesztést követően azonban jelentős mértékben fejlődött tovább. A rendszerértékek megállapításának fontossága a földművelésben is különlegesség volt. Ezen felül a rendszer a földművelésben való részvételét és a földművelési hatékonyság megszabását segíti.

Nem felel meg a rendszer teljes funkciója és erősítése. A rendszer a földművelési tevékenységek megőrzésére és a földművelési hatékonyság megszabására szolgál. Az ország területén kívül a földminőség várható változásai, az intézmények és intézményi kabinetek számára fontos információk lehetnek. A rendszer és az intézmények feladata az ország területén kívül a földművelési tevékenység és a földminőség megszabásának megfelelően alkalmazása.
A termőképesség értékelési módszerei Magyarországon (Lóczy D.)

Magyarország tervezési gazdasági körzeteinek atlaszszorozatához talajbonitációs térképek készültek, melyek természetes termékenységűk alapján tíz kategóriába sorolták talajainkat (Máté F. 1960).

4.1. Országos termőképesség-felmérés az 1960-as években

A Kreybig-féle talajismereti térképek felújítására vállalkozott a Géczy Gábor vezette munkacsoport (Géczy G. 1968). A Géczy-féle felmérést méltán tekinthetjük az első, talajtérképezésen alapuló, országos földértékelésnek. Célja a növénytermesztésre való alkalmasság minősítése volt a talajadottságok (a kémhatás, a talajszövet, a termőréteg-vastagság, a humuszos réteg vastagsága, a talaj sótartalma, kötöttsége, vízgazdálkodási típusa), részben pedig a földrajzi fekvés és az éghajlat alapján. A felmérésben háromféle módon minősítettek:

növényenként I., II. vagy III. rendű (azon belül is a vagy b fokozatú) termőhelyi kategóriákat különböztettek meg (6.1. ábra);

6.1. ábra - A búzatermesztés termőhelyi kategóriái a Dunántúlon (Géczy G. 1968 nyomán)
A termőképesség értékelési módszerei Magyarországon (Lóczy D.)

6.1. ábra A búzatermesztés termőhelyi kategóriái a Dunántúlon (Géczy G. 1968 nyomán)

másrészt növénycsoportokkal fejezték ki a földelemelet alkalmasságát: aszerint, hogy hány növénynek biztosít I., II. vagy III. rendű termőhelyet, ill. még hány növény termeszthető ott sikeresen 21 osztályt alakítottak ki; emellett még – Kreybig nyomán – talajhasznosítási osztályokat is meghatároztak.

Géczyt sok bírálat érte, hogy éppen a minősítés kiinduló lépésében nem fogalmazza meg egyértelműen a termőhelyi kategóriák kialakításának ismérveit. A talaj- és éghajlati adottságokon kívül az alkalmasságot a termőterület méretével, a hozamok kiegyenlítettségével, a fajtakeresleti veszélyének hiányával kapcsolja össze. Ezen kívül gazdasági feltételeket is említi: kedvező a piac közelsége, a jó szállítási lehetőségek és a rendelkezésre álló munkaerő.

Géczy legfrappánsabb újítása egyfajta indikációs megoldás. Rendszerében a termőhely minőségét egy vezető növény (egy gabonaféle) és két kísérő termény (kapás és pillangós takarmánynövény) jellemzi (6.2. ábra). A figyelembe vett terméséremény mérőszáma az alaphozam, tehát az akkoriban átlagosnak vehető agrotechnika alkalmazásával, de tápanyagbevitel nélkül számított, gabonaegységben kifejezett terméshozam.

6.2. ábra - Géczy-féle talajértékelő térkép részlete (Bicske környéke, Fejér megye) néhány jellemző talajszelvényvel és növénycsoportokkal történő minősítéssel (Géczy G. 1968 nyomán, egyszerűsítve)
6.2. ábra Géczy-féle talajértékelő térkép részlete (Bicske környéke, Fejér megye) néhány jellemző talajszelvényel és növénycsoportokkal történő minősítéssel (Géczy G. 1968 nyomán, egyszerűsítve)

A talajhasznosítási osztályok (tehát a különböző művelési ágakra való alkalmasság) jellemzése a Géczy-féle felméréshben a következőképpen történik: az A kategóriájú földek szántónak, a haszonnövények széles skálájának termesztésére alkalmasak, míg a B és a C jelűek megfelelősége korlátozottabb, a rét vagy a legelő a javasolható földhasználat. A további felosztás (a, b és c) ezt az osztályozást egyéb kedvező vagy kedvezőtlen adottságok szerint árnyalja. A természeti tényezők értékelésén kívül Géczy G. hangsúlyozza a közgazdasági tényezők fontosságát is.

A projekt végző célja a mezőgazdaság természeti körzeteinek meghatározása volt. Domborzati, éghajlati (elsősorban vízellátottsági) tényezők, valamint a talajhasznosítási osztályok összesítésével 40 körzetet határoltak el. Összefoglalóan megállapítható, hogy a Géczy G. által megvalósított program ökológiai igények szerinti, kategóriarendszerű minősítés.
4.2. Mezőgazdasági termőhelyértékelés („új földértékelés”) az 1970-80-as években

Az 1970-es években kormányzati szinten is felmerült az aranykorona-rendszer felváltásának szükségessége. Stefanovits Pál, Máté Ferenc és Fórizs Józsefné (1971, 1976) irányításával tudományos, talajtani ismeretekre építő termőhelyértékkelő módszert dolgoztak ki erre a célra (népszerűen: „százpontos” új földértékelés). A termőhelyértékelés elve az volt, hogy a talaj tulajdonságai (talajképző közet, fizikai féleség, humuszos réteg vastagsága és humusztartalma, termőréteg-vastagság, karbonáttartalom, szikesedés mértéke), majd a domborzat, az éghajlat és a hidrológiai tényezők külön-külön értékelhetők, majd a részértékeket együtt kifejezve termőhelyi értékszám alakítható ki. A módszer (Földértékelési szabályzat 1981) minden genetikai talajtípusra megállapította a lehetséges maximális (optimális esetben ez 100 volt) és minimális talajértékszámot, majd domborzati (lejtőszög és kitettség), ill. éghajlati alapon a maximumból levonások (korrekciók) törtenk. Az energetikailag lehetséges produkció kiszámítása (Szász G. 1979) alapján az országot öt éghajlati körzre lehet osztani. Minden közésre meghatároztak, hogy melyikbe tartozik, s ez a besorolás jellemezte átfogóan a klímaadottságokat.

Az így meghatározott termőhelyi értékszámot széles körben fel kívánták használni a földvagyon számbavételében; a földvédelem elősegítésében; a művelésből történő kivonáskor a pótlási érték megállapításában; az árképzésben, földlekötéskor, a földcserében; az állami támogatási rendszer, a gazdasági szabályozók kialakításában; a területi munkamegosztás elmélyítésében (Szabó G. 1975).

A termőhelyi értékszám megállapítására kétféle megközelítés kínálkozott: a talajtérképes módszer, amely talajkartogramok (az egyes talajtulajdonságok felmérésekre térképi ábrázolásai) minősítésén alapult volna, ill. a mintateres eljárás (teljesen hasonló, mint az aranykorona-rendszerben, ugyanazokra a becslőjárásokra támaszkodva).

Tudományos szempontból nem volt kétséges, hogy egyedül a talajtérképezés lehet egy korszerű földértékelés alapja (Fórizs J.-né 1985), azonban mindjárt a módszer kidolgozásakor a gazdaságosság megfontolások kapattak döntő szerepet: a mintateres felvételezés természetesen jóval olcsóbbnak ígérkezett. 1991-ben Magyarország területének csak 64%-áról álltak rendelkezésre üzemi talajtérképek (Szabóné Kele G. 1999). Úgy becsülték, hogy a részletes (1:10 000 méretarányú) térképezés kiterjesztése hazánk teljes területére 8-10 évig is eltartott volna.

A genetikus talajosztályozás alapján készült 1:10 000-es méretarányú térképeken a földhivatalok és a talajvédelmi szolgálatok munkatársai egységes szempontok szerint végezték a földminősítést. Atlagosan 10-15 ha területen jelölték ki talajszelvényeket, ahol a talajviszonyok változékonysága ezt indokolta, sűrűbben is. Ahol a korábbi genetikus üzemi talajtérkép és a hozzá tartozó kartogramok, vizsgálati jegyzőkönyvek rendelkezésre álltak, ott csak kb. 30 ha-onként tártak fel ellenőrző szelvényeket. Az EOTR rendszerben készített talajtérkép (alaptérkép) a genetikai típust, altípust, a talajképző közetet, és a müvelt réteg fizikai talajfélleségét tünteti fel (6.3. ábra).

6.3. ábra - Nagy méretarányú földminősítési térkép részlete (Dömsödi J. 2011 nyomán).
1 = a talajszelvény helye, sorszáma és kódszáma; 2 = talajtípus, altípus, változat; 3 = talajképző közet; 4 = fizikai talajfélleség

A termőhelyi értékszámokon alapuló földértékelés akkor léphetett volna az aranykorona-rendszer helyébe, ha a területegységre jutó bruttó vagy nettó jövedelmek meghatározása alapján (Vági F. 1970; Szabó G. 1975) megszületett volna a korszerű, tudományos közgazdasági értékelés is. Ez azonban továbbra sem készült el, ezért a rendszerváltozások esetén szükséges volt az aranykorona-értékhez, a földértékelési munkálatokat leállították. A felmérés számítástechnikai háttere (Commodore 64 gépek) gyorsan elavult, az összegyűjtött értékes adattömege ma sem térképes, sem digitális formában nem hozzáférhető (Szabóné Kele G. 1999).

4.3. Közvetlen termőhelyértékelés megyei szinten

A Pest megye 638 000 ha-os területére kikísérletezett módszer más megyékre és nagyobb méretarányú felmérésekre is alakítható. A vizsgálat első szakaszában számítógépes adatbázisra alapozva, éghajlati, domborzati, talaj- és vízgazdálkodási jellemzők szerint homogénnek tekintett termőhelyeket, ún. ökotípusokat határoztak meg és határoztak el. Az automatikus osztályozás összesen 382 ökotípust alakított ki, de az elemzés végül csak arra a 72 ökotípusra készült el, amelyek együttesen a megye területének több mint 90%-át tették ki. A továbbiakban szántóföldi növényenként (búza, őszibánya, tava, sáros- és lúdpor, napraforgó, cukorállomás, burgonya, lucerna, kóró edz.) a szőlő, a gyümölcs, a zöldség, a gyep és az erdő művelési ágra, valamint ökotípusonként kiszámították a jelenlegi, gyakorlati agroökopotenciál (AP) értékét. Az agroökopotenciál függ a természeti környezet teljesítőképességétől, az adott növényfaj vagy -fajta biológiai termőképességétől és az alakított természeti technológiától. A számított AP azért jelenlegi, mert a felmérés időpontja körüli, kb. 10–15 éves időszakra vonatkozott, és azért gyakorlati, mert egy-egy ökotípus területén, a vizsgált időszakban a gyakorlatban előterjesztett növényfajok (AP-növényenként a három legmagasabb hozamú tábla átlagából) kalkulálták. A PAP tehát alapjában véve közvetlen földértékelő módszer, így ncsen szüksége az agroökológiai alkalmasság áttekintésére (pl. pontosításos) minősítésére.

A felmérés másik újdonsága, hogy ennek a potenciálúnak a kihasználtságát is meg kívánta adni, táblánként, az AP százalékát. Az átlagos kihasználtság egy növény és egy ökotípus esetében a táblánkénti kihasználtság középértéke. A ráfordítások közül feladat volt a műtrágya hasznosulásának becslése. Az alkalmazott NPK műtrágya mennyiségét elosztottuk az egyes növények terméshozamával, így megkaptuk az I t termék növényenként és ökotípusonként átlagolni szükséges fogyasztást és műtrágya hasznosulás értékei növényenként eltérő.
Először a talajtípusok és altípusok, a művelési ágak eloszlása, valamint az ún. klimatikus évtípusok gyakorisága alapján agroökológiai körzeteket határoztak meg, határaikat az ország közigazgatási beosztásához igazítva. Ezután makrokörzetekenként kiszámították a főbb növények termésátlagait, majd matematikai modelleket fejlesztettek ki, hogy segítségükkel megbecsüljék a termésátlagok változásának tendenciáit és a 2000-re várható értékeit. A klimaév-típusok szerinti körzetesítésen kívül a talajok terménység szerinti osztályozása is az agroökológiai potenciál felmérésének egyik maradandó eredménye (6. 1. táblázat).

Mint korszerű prognozismodell a hazai földértékelés történetében fontos helyet foglal el, bár az 1990-es években a mezőgazdálkodás társadalmi-gazdasági feltételei olyan mértékben megváltoztak Magyarországon, hogy a felmérését eredi céljának tejesítését, az ezredfordulóra vonatkozó prognózist nem lenne tisztességes számom kérni (Lóczy D. 2002). A felmérés országos jelleggéből adódóan területi részletessége sem volt megfelelő, csupán a regionális különbségek vázlatos érzékelhetésére volt alkalmas.

6.4. ábra - A genetikai talajtípusok osztályozása búzatermesztés szempontjából

6.1. táblázat A genetikai talajtípusok osztályozása búzatermesztés szempontjából (forrás: A mezőgazdaság ... 1980; II.2.2. ábra). I = alkalmatlan; V = a leginkább alkalmas

6. A természetföldrajzi tájértékelés

Az egykori NDK tájökológiai iskolájában a mezőgazdasági termőhelyértékelésnek (Standortsbewertung – Haase, G. 1978), amelyen a magyarországi természetföldrajzi értékelések is alapultak, három szakaszát különböztetik meg: a tájökológiai elemzést (a dombokort, a vízháztartást, az éghajlatot, a talaj- és a növénytakaró számbavétele); a tájszintézist (az előbbi adatok rendszerezésével termőhelytípusok megállapítása); a tájfeltárás (a lehetséges földhasználatok megállapítása, a táj termőképességének gazdasági, ökológiai és társadalmi-politikai értékelése).

Az 1960-as évektől a geográfusok is részletes, terepmunka-igényes agrogeológiai felméréseket végeztek kisebb mintaterületeken, elsősorban a Központi Földtani Hirvatal megbízásából. Ezek a munkák jellemző módon nagyüzemi keretek között folytak, nagy (általában 1:10 000) méretarányban készültek. Gyakorlati megfontolásból a gazdálkodó egységek földterülete tűnt megfelelő keretnek, hiszen egy-egy termelőszövetkezet vagy állami gazdaság területére könnyebben lehetett beszerezni a kutatáshoz szükséges alap- vagy ellenőrző adatokat.
A geoformák másikban közelítettek a feladathoz, mint az agrárszakemberek. Egyrészt igyeksztek érvényre juttatni a komplex tájértékelés fenti, maguk meg fogalmazta irányelveit, másrészt a klasszikus természetföldrajz talaján álltak; a legpontosabban térképezhető tájalkotó tényező, a domborzat részletes értékelése volt a kiindulópontuk. („A táj váza a domborzat.”) A talajtulajdonságok térképeit a domborzati viszonyok (pl. a katéna-elv) messzemenő figyelmebetételével szerkesztették.

Az agrogeológiai felmérések az 1970-es évek elején fokozatosan agroökológia jellegűvé fejlődtek. Az agroökológia Góczán László (1972; p. 504.) szerint az ökogeográfia, a földrajzi indítatás alapján készült (egy alapadtományu) egyik alapnak feladata „az agrogén környezettípusokban, ill. mezőgazdasági mikrorégiónakban a mezőgazdaságot érintő természeti és antropogén-természeti adottságoknak és folyamatoknak, mint a mezőgazdaság … erőforrásainak felértékelése, ezek egymásra és a mezőgazdasági termelésre gyakorolt hasznos és káros hatásainak megismerése, prognosztizálása, majd ezen ismeretek birkózásban az agrogén környezet optimális, környezetvédelmi fejlesztésére vonatkozó javaslatok kidolgozása”.

Számos reprezentatív típuserületen végezték felmérést: ilyen lehetett egy-egy alföld, dombás, hegyesség jellemző részlete, melyek azonban nem voltak természetföldrajzi (tájiológiai) egységek. Az MTA Földrajztudományi Kutató Intézetében az 1970-es években készült agroökológiai felmérések ugyancsak gazdasági szinten, 1:10 000 mérettávolságban értékeltek a legkülönbözőbb tájalkotók (pl. a Nyugat-Mezőföld lösözs típuserülete, Enyedi környéke) mezőgazdasági potenciálját. Geomorfológiai térképek készültek a felszínformák határáival és az azokat kialakító folyamatok feltüntetésével; genetikai talajtérkép különböző kartogramokkal kiegészítve; valamint szöveges magyarázó (a mikroklima-mérések eredményei, a talajszelvények leírásai, a természeti viszonyok szöveges értékelése). A kartogramok egyenként ábrázoltak egyes domborzati jellemzőket, mint a lejtőkategória (a mezőgazdaságban, a műveléshez használt, %-os kategóriákkal kifejezve) és azokat kialakító folyamatok feltüntetésével; az alapadottak, mint az alapvető és a legalacsonyabb pont különbsége területégen kívül, valamint talajtulajdonságokat, mint a termőméteget és a humuszos réteg vastagsága, a humusztartalom, a kémhatás és a mészállapot, a mechanikai összetétel, az erózió mértéke (erős, közepes, gyenge, nem erodált), a vízhasznosulás (hasznos vízhasznosítás) Végül pedig javaslatok a talajművelésre (a szántás megengedett mélysége, alapvető mértéke (erős, közepes, gyenge, nem erodált), a vízhasznosulás (hasznos vízhasznosítás) ezt Góczán László vezetésével két akkori járás területén próbálták ki. A termőhelyi értékszám meghatározása az “új” földértékelés (Fórizs J. 1975). Kimutatta, hogy a természeti képződményként létrejött ökotópok a szüntelen és egyre fokozódó eredményeire támaszkodó, hatalmas területi részletességgel kiindulópontjuk. (“A táj váza a domborzat.”) A talajtulajdonságok térképeit a domborzati viszonyok (pl. a katéna-elv) messzemenő figyelmebetételével szerkesztették.

A legrészletesebben továbbra is a domborzatot vették figyelembe, a talajszelvények adatait a domborzat (a geomorfológiai és a lejtőkategória-térkép) alapján terjesztették ki területileg. A tájiológiai felmérések egzaktságát fokozta, hogy a térképezett mennyiségekből már alapvető, hogy a térképiepület alapján terjesztették ki területileg. A tájiológiai felmérések eredményeire támaszkodó, megyei szintű termőhely-értékelést először Komárom megyére végzett Góczán László (1975). Kimutatta, hogy a természeti képződményként létrejött ökotópok a szüntelen és egyre fokozódó kerületben, amelyek egységesítik az adottságokat különösen a tájertékelés fenti, megfelelően létrehozott, főleg mezőgazdasági részletes mérésekre jutatnak és a műveléshez szükséges adatokat gyakorolnak. Az adottságokat különösen a tájertékelés fenti, megfelelően létrehozott, főleg mezőgazdasági részletes mérésekre jutatnak és a műveléshez szükséges adatokat gyakorolnak.

A termelőképesség értékelési rendszerei Magyarországon (Lóczy D.) felmérés középpontjában a területi alakított tényezők alapján kialakultak. A felszínformák határaival és az azokat kialakító folyamatok feltüntetésével; genetikai talajtérkép különböző kartogramokkal kiegészítve; valamint szöveges magyarázó (a mikroklima-mérések eredményei, a talajszelvények leírásai, a természeti viszonyok szöveges értékelése). A kartogramok egyenként ábrázoltak egyes domborzati jellemzőket, mint a lejtőkategória (a mezőgazdaságban, a műveléshez használt, %-os kategóriákkal kifejezve) és azokat kialakító folyamatok feltüntetésével; az alapadottak, mint az alapvető és a legalacsonyabb pont különbsége területégen kívül, valamint talajtulajdonságokat, mint a termőméteget és a humuszos réteg vastagsága, a humusztartalom, a kémhatás és a mészállapot, a mechanikai összetétel, az erózió mértéke (erős, közepes, gyenge, nem erodált), a vízhasznosulás (hasznos vízhasznosítás) Végül pedig javaslatokat tartalmazó kartogramok is készültek. A javaslatok a talajművelésre (a szántás megengedett mélysége, lazítandó talajréteg) és a földhasználatra vonatkoztak. A geográfusok másképpen közelítettek a feladathoz, mint az agrárszakemberek. Egyrészt igyeksztek érvényre juttatni a komplex tájértékelés fenti, maguk meg fogalmazta irányelveit, másrészt a klasszikus természettudomány alapján kialakultak. A legpontosabban térképezhető tájalkotó tényezők és azokat kialakító folyamatok feltüntetésével; genetikai talajtérkép különböző kartogramokkal kiegészítve; valamint szöveges magyarázó (a mikroklima-mérések eredményei, a talajszelvények leírásai, a természeti viszonyok szöveges értékelése). A kartogramok egyenként ábrázoltak egyes domborzati jellemzőket, mint a lejtőkategória (a mezőgazdaságban, a műveléshez használt, %-os kategóriákkal kifejezve) és azokat kialakító folyamatok feltüntetésével; az alapadottak, mint az alapvető és a legalacsonyabb pont különbsége területégen kívül, valamint talajtulajdonságokat, mint a termőméteget és a humuszos réteg vastagsága, a humusztartalom, a kémhatás és a mészállapot, a mechanikai összetétel, az erózió mértéke (erős, közepes, gyenge, nem erodált), a vízhasznosulás (hasznos vízhasznosítás) Végül pedig javaslatokat tartalmazó kartogramok is készültek. A javaslatok a talajművelésre (a szántás megengedett mélysége, lazítandó talajréteg) és a földhasználatra vonatkoztak.
csak csapadék- és hőmérsékletadatokat lehetett beszerezni, ezért az éghajlatot lényegében két, a hazai viszonyokra kidolgozott mutató, a hő- és a vízellátottság értékével kellett jellemezni, a Péczely-féle ariditási index (Péczely Gy. 1979) felhasználásával. A két index kombinálásával elvileg 12 éghajlati típust lehetett kialakítani, majd tapasztalati alapon rangsorszámkakellátni (6.2. táblázat).

6.2. táblázat Az éghajlattípusok relatív értékelő táblázata (szerkesztette: Lóczy D., egyszerűsítve). 1-9 = rangsorszámok; H = ariditási index; tv = a tenyészidőszak középhőmérséklete

6.5. ábra - Az éghajlattípusok relatív értékelő táblázata (szerkesztette: Lóczy D., egyszerűsítve).

<table>
<thead>
<tr>
<th>meleg</th>
<th>nedves</th>
<th>mérsékeltén nedves</th>
<th>mérsékeltén száraz</th>
<th>száraz</th>
</tr>
</thead>
<tbody>
<tr>
<td>tv>17.5°C</td>
<td>H<0.85</td>
<td>0.85<H<1</td>
<td>1<tv<1.15</td>
<td>H>1.15</td>
</tr>
<tr>
<td>16.5°C<tv<17.5°C</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>15.0°C<tv<16.5°C</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>tv<15.0°C</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

A módszer az árnyaltabb osztályozáshoz esetenként még a nyári napok számát és a januári középhőmérsékletet is felhasználja. Az értékelő térkép (6.4. ábra) részletezésége megfelel a forrásadatok (meteorológiai állomások idősorainak átlagértékei) sűrűségének.

6.6. ábra - Az éghajlati potenciál mezőgazdasági szempontú minősítése Veszprém megye egykori ajkai és pápai járása területén
6.4. ábra Az éghajlati potenciál mezőgazdasági szempontú minősítése Veszprém megye egykori ajkai és pápai járása területén (szerkesztette: Lóczy D., forrás: Góczán L. 1984, 4. ábra), a = évi csapadék mennyiség (mm); b = a tenyészidőszak (április-szeptember) csapadéka (mm); c = évi középhőmérséklet (°C); d = a tenyészidőszak (április-szeptember) középhőmérséklete (°C); e = januári középhőmérséklet (°C); f = átlagos évi vízhiány (mm); g = a >10 mm csapadékú napok száma; h = a szélerősség évi átlaga (m/sec); i = ariditási index (Péczely Gy. 1979 szerint); j = nedvesség-ellátottsági index (Konček, J. szerint)

Az egyes természeti „tényezők” azonban nyilvánvalóan nem külön-külön, hanem kölcsönhatásákon keresztül szabják meg a környezet minőségét. Ezért relatív értékelésük után Góczán L. kísérletet tett az eredménytérképek integrálására. A térképeket négyzethálóssá alakította, majd egymásra helyezte (szuperponálta).

Az újszerű paraméteres módszer széles körű adatházisra építve, részletesen, közértethető térképeken mutatja be a természeti adottságokat. Hátránya között említhető, hogy a minősítés célja túl általános, elsősorban a növénytermesztésre készült, de az egyes növénycsoportok igényeiben tapasztalható, gyakran jelentős mértékű különbségeket nem veszi figyelembe. Nem sikerült megoldani a különböző részeredmények egységbe foglalását, a természeti környezet átfogó, arányos értékelését sem.

Az 1980-as évek második felében Marosi Sándor és Somogyi Sándor (1990) témavezetésével tucatnyi természetföldrajzos, talajtanos és klimatológus szakember összegezte két vaskos kötetben (Magyarország
A termőképesség értékelési módszerei Magyarországon (Lóczy D.)

kistájainak katasztere) 230 magyarországi kistáj legfontosabb jellemzőit. A kutatási program erősen támaszkodott a „Magyarország tájföldrajza” c. monográfia-sorozat keretében végzett tájértékelési munkára. A kataszter tartalmazza a kistájak besorolását és helyzetét; területhasznosítását; domborzati (morfometria) jellemzőit; földtani adottságait; éghajlati adatait; vízrajzi mutatóit; természetes növénytakaróját és termesztett növényeit; talajtípusait, valamint sajátos táj adottságait.

A leírás mindig rövid tájtipológiai összefoglalóval zárul, melyen általános hasznosíthatóságukról is képet kapunk. A különböző tájaktól függetlenül jellemzésében többféle implicit értékelés is rejlik: pl. a vizek esetében megadják a vízminőség kategóriáját, a természetes növényzetnél az erdőgazdálkodási értékelés számára a faállomány növekedési ütemét, a sajátos táj adottságok között pedig a rekreáció lehetőségeit. Alkalmasság másolódás és értékesítés szempontjából jelentős részlet.

A kis társképesség katasztere 2009-ben, Dövényi Zoltán szerkesztésében, új, a táj kulturális jellemzőivel kiegészített kiadásban jelent meg. Manapság ez a leggyakrabban használt földrajzi kézikönyv.

7. Értékelés a tájrendezésben

A tájrendszer folyamatában, a táj értéknövelő átalakításakor ökológiai, közgazdasági, műszaki és esztétikai szempontokat egyaránt érvényesíteni kell. A tájrendszer és az úgy ismert növényföldrajzi rendszer – a tájak kulturális jellemzői mellett a táj hasznosításának lehetőségeit is. A különböző tájok ökológiai értékelése általában az úgy ismert növényföldrajzi rendszerek közt détűen fordulhat meg.

Térinformatikai módszerek a mezőgazdasági tájak értékelésében

A termőképesség értékelési módszerei Magyarországon (Lóczy D.)

A 110 attribútum – az éghajlaton kívül – a környezeti tulajdonságok legtöbb csoportjára kiterjed. A SOTER eredményein alapul az Egyesült Államokban használatos ALES földértékelő rendszer is.

Az Észak- és Dél-Amerika három mintaterületen kipróbált módszer hazai alkalmazását, a HunSOTER-t 1993-tól az MTA Agrokémiai és Talajtani Kutató Intézete irányította. Az adatbázisra épülő alkalmazások egyike földértékelési (Várallyay, G. et al. 1994): a GIS segítségével kiszámítható a talajtípus területarányos bonitációs értéke, majd különböző korlátozó tényezők miatt levonások során keresztül általános talajbonitációs értéket kapunk. A talajtípusok különbségeire tekintettel a következő korlátozások szerepelnek (az adatbázis természetesen mindegyikükre kiterjed): szélsőséges pH-érték; szélsőséges talajszövet; nagy karbonáttartalom; alacsony szervesanyag-tartalom; sekély (vagy hiányzó) humuszos réteg; sósság, szikesség; termőréteg-korlátozás; felszíni vagy szelvénybeli kövesség; sérülékenység víz vagy szél okozta talajerózió által és a talajképző közből fakadó korlátozás. Az országos felmérés 1:500 000 méretarányban, de az agrotopográfiai térképezés (1:100 000 méretarány) egységeire támaszkodva készült el 1994-ben.

További alkalmazási lehetőségek a HunSOTERen belül: különböző sérülékenységi osztályozások (a napjainkban a talajokat a leginkább „fenyegető” veszélyek: a talajerózió, az elsavanyodás, a másodlagos szikesedés kockázata szempontjából). Sajnálatos, hogy a nemzetközi SOTER csonka maradt, világméretű adatbázisként nem készült el. Magyarországon azonban mindmáig a HunSOTER a legjobban használható „átnézetes” információforrás a környezet állapotáról.

Újabb termőhely-elemzési vizsgálatok

Hasonló kísérleti projekt keretében talajalkalmassági vizsgálatot is végezték, amelybe azonban táblánkénti domborzati és mikroklima-adatakat is beépítették. Megállapították a táblák rangsorát az egyes növények termesztése szempontjából; melyen mértékben elégték ki a környezeti adottságok az egyes növények igényeit; az egyes táblák termőképességét (az egyes növényekre végzett értékelés eredményeinek összegzésével).

Szakértői rendszerek a tájértékelésben

A környezeti kutatásokban a matematikai szimuláció hatékonyságát újabban szakértői rendszerek (Mérő L. 1997: pp. 216-225.) alkalmazásával igyeksznek fokozni. Ezek a mesterséges intelligencia kutatások eredményeként megszületett eljárások a földértékelés eszköztárában is megjelentek (Barrett, J.R. – Jones, D.D. 1989). Olyan, szakterületenként speciálisan kidolgozott számítógépes programok vagy inkább csak azok vázai (program shell), amelyekbe megszerkesztiük a numerikus információkon kívül „szimbolikus” (számokkal ki nem fejezhető) tudást is igyeksznek belefoglalni, módszerekben pedig a „biztos” eredmény nyújtó matematikai algoritmusok mellett heuristikus („felismerő”, de matematikailag nem bizonyító erejű) eljárásokat is alkalmaznak, ami rugalmasabban teszi a programokat (Buchanan, B.G. – Smith, R.G. 1989). (Ezen kívül még a szakértői rendszereknek több más meghatározása is ismeretes.)
Lényegük, hogy egy tudományos probléma megoldásakor a témában érintett, de nem feltétlenül teljesen azonos háttérről rendelkező, elméleti és gyakorlati szakértők szak tudását valamilyen módon beépítsék a rendszerbe, s a felhasználók számára is hozzáférhetővé tegyék (Simon, K.H. et al. 1992). Ezt a folyamatot a mesterséges intelligencia kutatói tudástervezésnek (angolul: knowledge engineering) nevezik. A szakértői rendszer alkalmazásának alapfeltétele (Hart, A. 1989) tehát, hogy a szakértelmem részerek (modulokra) bontható; nyelvileg kifejezhető (verbálízátható); a szakértő félénként létezik; az adott feladat megoldásához szükséges tudás meghatározható. A szakértők szerepe abban foglalható össze, hogy megadják a feladat megoldásához szükséges alapvető információkat (adatbázis feltöltése); feltárják a vizsgálat jelenségek, folyamatok logikáját (tudásbázis kialakítása); megbeállítható, hogy a rendszer bizonyos elemei milyen mértékben függnek egymástól, bizonyos események milyen következményekkel járhatnak (feltétel-cél jellegű szabályok megfogalmazása); megállapítható, hogy valószínűségét rendelnek.

A rendszer önálló osztályozásra nem képes, a szakértők által meghatározott (pl. FAO alkalmassági) osztályokba sorolja be a területégeket.

Mint minden új megközelítést, a szakértői rendszereket is keményen kritizálnak. Sokak szerint továbbra is hiányzik belőlük a kreatív emberi gondolkodás képességének döntő eleme, az intuíció (Mérő L. 1997), holott az ellenére az alkalmazott tudományágokak egyre inkább „félfedezik” őket, a környezetgazdálkodásban pl. a mező- és erdőgazdász, a víz- és hulladékgazdálkodás, a területi tervezés környezeti és technológiai problémáinak megoldására egyaránt (Simon, K.-H. et al. 1992).

A D-e-Meter földértékelő rendszer

A projekt fő céljai a következők voltak:

- a földminőség térbeli különbségeinek bemutatása online térinformatikai eszközökkel; növénytermesztési modellész a földminőség és egyéb kritériumok (pl. racionalis műtrágya-felhasználás) kombinálásával; támogatni a szántóföldi műveléssel kapcsolatos adatszolgáltatási kötelezettségek teljesítését, egyszerűsíteni az ágazati irányítással történő közvetlen kommunikációt.

A projekt fő céljai a következők voltak:

- a földminőség térbeli különbségeinek bemutatása online térinformatikai eszközökkel; növénytermesztési modellész a földminőség és egyéb kritériumok (pl. racionalis műtrágya-felhasználás) kombinálásával; támogatni a szántóföldi műveléssel kapcsolatos adatszolgáltatási kötelezettségek teljesítését, egyszerűsíteni az ágazati irányítással történő közvetlen kommunikációt.
A D-e-Meter földminősítési rendszerben kiemelt jelentőségű tényező a dombokzet, a talajok víz-/tápanyagellátottsága, komplex tulajdonságai és a művelés módja (6.5. ábra). Ezen kívül az éghajlatot is figyelembe veszik a következő módon: Magyarország 75 agrometeorológiai alkörzetében a növények termésomennyisége szerint háromféle évjárat határozható meg:

I. optimális évjárat (amely maximális produkción eredményez);
II. ún. várható évjárat (amely átlagos produkcióval jár) és
III. rossz évjárat (jelenlenségen gyengébb terméssel).

A rendszer statisztikailag értékeli a hosszútávú, kilenc agrogeológiai régióban, azonos mértékű trágyázás mellett folytatott tartamkísérletekből kapott adatokat.

A D-e-Meter pontérték kiszámítása az alappontok meghatározásával kezdődik a) a magyar genetikus talajosztályozási rendszer minden talajaltípusára (Szabolcs I. 1966), ezen belül b) a fontos haszonnövényekre, c) a talaj vizellátottsága, d) a művelés intenzitása (extenzív vagy intenzív) szerint e) mindegyik meteorológiai régióra és f) három évjáratípusra (szaraz, átlagos, kedvező) megadva. Majd korrekciók következnek a) a talajtulajdonságok (talajszövet, szervesanyag-tartalom, pH, alapkőzet) szerint; b) a tápanyag-ellátottság szerint; c) dombokzet (kitettség és lejtés) szerint; végül pedig d) az elővetemény hatását figyelembe véve.

Az automatizált földminősítő és földértékelő algoritmusokat könnyű aktualizálni, azok jogszabálytalál bevezethetők, az adózás, támogatások és kisajátítás esetén is fontos információkat szolgáltatnak. Ha az egész ország területét lefed egy legalább 1:10.000-es méretarányú talajtérképnek megfelelő adatbázis, multifunkcionális intelligens földminősítési rendszer alakítható ki.

Gyakorlati földminősítő eljárás

Egy legújabban kidolgozott, gyors, viszonylag kevés alapadatot megkövetelő termőképesség minősítő (land capability) eljárásnak, az ún. „gyakorlati földminősítésnek” (Dömösi J. 2011) nyolc tényező az alapja (6.4. táblázat). A termőföldeket százpontos skálán minősíti.

A legtermékenyebb talajtípusok: a mészlepedékes csernozjomok, a réti és az öntészcernozjomok. A feltalaj kémiai tulajdonságai szempontjából pedig a legkedvezőbb mészállapotú, semleges kémhatású talajok élveznek előnyt. A IV. tényezőcsoportban a vályog szővetű, morzsás szerkezetű talaj kapja a legtőbb pontot. Az egyes növények termesztésére való alkalmasság (land suitability) szerint a búza-cukorrépa-lucerna indikációjú terület a legértékesebb, mert a szántóföldi használat esetén 40 féle növényt jó, további ötöt közepes eredménnyel lehet termeszteni rajta, ezen kívül pedig a többi művelési ágra (réti, legelő, szőlő, gyümölcsös) is kiválóan alkalmas.
A termőképesség értékelési módszerei Magyarországon (Lóczy D.)

6.4. táblázat A gyakorlati földminősítés fő tényezőcsoportjai (Dömsödi J. 2011 nyomán)

6.5. táblázat A gyakorlati földminősítés fő tényezőcsoportjai (Dömsödi J. 2011 nyomán)

Felhasznált irodalom

7. fejezet - A természetvédelmi rekreációs célú tájtervezés (Csorba P. – Horváth G.)

1. Természetvédelmi és rekreációs területek tervezésének geográfiai alapjai

A fejezet címében szereplő két területhasználati cél együttes tárgyalását két tényező indokolja.

1. A fejlett környezetkultúrával rendelkező országokban a beépítések mellett ennek a két használati típusnak az aránya nő a leggyorsabban. Az ilyen célokat szolgáló területekre komoly társadalmi igény van, emiatt egyéb földhasználati formákkal sűrűn előfordulnak érdekükközések, tervezési konfliktusok.

2. A természetvédelmi területek jelentős része egyúttal rekreációs célokat is szolgál, a kétféle területhasználati forma esetében sikeresebben megoldható a közös használat, mint a természetvédelmet a mezőgazdasági, ipari, vagy infrastrukturális célokkal összhangba hozni.

A területhasználati célok tendenciáit jellemző adatok azt mutatják, hogy a fejlett országokban a táj működését, vizuális és strukturális szerkezetét leginkább a beépítések, azon belül elsősorban az infrastrukturális elemekek területi arányának rohamos növekedése befolyásolja. A Európai Unió országaiban átlagosan 9%-át az épületek, utak, parkolók, hulladéktálokozók, raktározások szolgáló telkek stb. foglalják el. Néhány kis területű ország esetében; pl. Dániában, Hollandiában ez az arány már meghaladja a 15%-ot.

A másik jellemző trend a természetvédelmi és a pihenésre, üdülésre szolgáló területek növekedése. A védettség alacsonyabb fokát élvező tájvédelmi körzetek mellett az utóbbi 10-15 évben a Naturparkok, Geoparkok, ill. a Natura 2000 területek kijelölésével ugrásszerűen megött az ide tartozó területek kiterjedése. Ennek köszönhetően a Kelet-Európai-síkság vidékeit nem számítva a kontinensen eléri a 20%-ot a valamilyen jogi védelem alatt részesülő területek aránya. Hazánk e tekintetben az európai átlagot képviseli, a nemzeti parkok, természetvédelmi területek, tájvédelmi körzetek által képviselt 10%-nnyi országterülethez 2004-óta újabb 10%-ot jelentő Natura 2000 terület csatlakozott. Közgazdasági értelemben a védett természeti területeket gyakran sorolják az improduttív, csak kiadásokat és csekély bevételt hozó területek közé. Emiatt van egy bizonyos kényszer a természeti területek pénzügyi értékének kifejezésére (Costanza), sőt újabban a környezetmegőrzéssel, az emberi komfortért, identitásértéss növelésével, erősítésével kapcsolatos erkölcsi kötelezettség monetáris meghatározására is (7.1. ábra).

7.1. ábra - Az Európai Unió Habitat Directive (92/43/EEC) azaz az Élőhelyvédelmi Irányelvnek megfelelő természett-megőrzési területek
7.1. ábra Az Európai Unió Habitat Directive (92/43/EEC) azaz az Élőhelyvédelmi Irányelvnek megfelelő természet-megőrzési területek

Úgy tűnik, hogy a természetvédelmi meggondolások miatt védelemben részesülő felszínek aránya a jövőben már nemigen fog ugrásszerűen gyarapodni, s hosszú távon megmarad a fejlődő országokban már ma is jellemző 20-30%-os arány között. Az elkövetkező évtizedekben inkább a meglévő területek védettségének minőségi fejlesztése a fő cél, illetve az, hogy a nem védett területeken egyre jobban érvényesüljenek az általános tájvédelmi, környezetvédelmi elvek.

A környezetvédelmi, természetvédelmi és rekreációs célok közös megvalósításának ideális helyszínei lehetnek az erdőfedett vagy a szabad vízfelülettel rendelkező területek. Az erdők arányának növelése meghirdetett és támogatott uniós célkitűzés, a vizes élőhelyek növelését, átgondolt tervezését pedig a klimaváltozás egyre határozottabbán sürgeti.

Magyarország helyzete a fenti uniós törekvések tekintetében tipikusnak mondható; az erdőtelepítés lassan száz éves nemzeti program, a vizes élőhelyeink pedig a sajátos adottsággal rendelkező, önállónak elismert pannon biogeográfiai egység fokozottan klímaérzékeny foltjait képviselik. Az általános uniós célkitűzések mellett azonban érvényesíteni kell azt az országos és szövetségi adottságunkat is, hogy nálunk kiemelkedően magas a szántóföldi művelésre alkalmas területek aránya, amelyet hiba volna akár uniós érdekek túlzott figyelembevételével beérősíteni, vagy akár legelőként hasznosítani.

A fenti bevezető gondolatokból egyértelműen látszik, hogy a természetvédelmi és a rekreációs területekre jelentős társadalmi igény van, de ezúttal is vannak olyan uniós, országos, vagy helyi érdekek, amely miatt a tervezés komoly területhasználati konfliktusokba ütközhet.

Országos szintű természetvédelmi és rekreációs célok

Az Országgyűlés 97/2005.(XII.25.) OGY határozata az Országos Területfejlesztési Koncepcióról szóló dokumentumban az alábbi területfejlesztési alapelvek érintik a témákat:

• „térési és táji szemlélet, a valós térszerveződések követése
• ….integrált fejlesztések
A természetvédelmi rekreációs célú tájtervezés (Csorba P. – Horváth G.)

92

• a közkincset képező természeti és kulturális értékek ... terhelhetőségen belüli elérhetőségének növelése
• helyi környezettudatosság, a táji értékek iránti felelősség…
• …a települések közti területek lehetőség szerinti természetközeli állapotban tartása…
• … saját arculattal és identitással rendelkező térségek…kialakításának támogatása”

A fenti OGY határozat területfejlesztési politika átfogó céljai 2020-ig címet viselő fejezetében szó van a nemzetközi jelentőségű turisztikai térségek megerősítéséről, továbbá arról, hogy a társadalmi, gazdasági, természeti-környezeti és kulturális elemeket integrált környezeti tervezéssel kell fejleszteni.

A 2013-ig kijelölt országos területi célok felsorolása során szó esik
• a budapesti metropoli-térség zöldterületeinek revitalizálásáról,
• a fővárost övező ökológiai és rekreációs zöld gyűrű kialakításáról és
• a települések fizikai agglomerálódásának megakadályozásáról.

Az országos jelentőségű integrált fejlesztési térségek felsorolása a Balaton környékét, a Tisza-térséget, a Dunamentét és a termálvíz kincsel rendelkező körzeteket említ. Ezen tájak esetében utal a dokumentum a Balaton térség aktív tájképvédelmére, az időlési szezon meghosszabbítására és az idegenforgalom területi széterítésére. A két nagy folyó mentén húzódó területek esetében pedig az ártéri tájrehabilitációra, az ökoturisztikai fejlesztésre valamint a biodiverzitás megőrzésére. Végül szerepel a koncepcióban a geotermális vagy korai területi területfejlesztés jelentősége.

Hangsúlyos elem a határon átnyúló táj-természeti és környezetvédelmi, ökológiai gazdálkodási rendszerek fejlesztését célzó bekezdés. A falusias térségek között a Duna-Tisza közöni Homokhátság természeti adottságait sújtó degradációs folyamat megállítását nevezi kiemelt feladatként.

A regionalis fejlesztési irányok kijelölése című fejezetben új elem a Nyugat-Dunántúl (Győr-Sopron-Moson, Vas, ill. Zala megye) „zöld jövőrégió”-ként történő bemutatása. Ezen kívül a „szabadidő gazdaság” kifejezés újítást jelent a Közép-magyarországi régió fejlesztésének.

Az Országos Fejlesztési és Területfejlesztési Koncepció

Az OFTK „nemzeti jövőkép” fejezetében témáinkat érintő megállapításai között megtalálható a turizmus, különösen a termálturizmus fejlődése, a vizekről történő fokozott gondoskodás, valamint a tájvédelem szükségessége. A tájvédelem a terjedelmes dokumentumban később is rendszeresen felbukkan, többnyire a „természett-, táj- és környezettvédelem” formában. Néhány természetföldrajzi tájunk komplek fejlesztése sűrűn feladatként jelenik meg. Ezek közé sorolja a Cseréhátat, a Tisza-völgyet, a Duna-Tisza közöni Homokhátságot és az Ormánságot.

Más léptékben rendszeresen visszatérő elem a burkolt felületek növekedésének lassítása, ill. a zöldfelületek növelése.

Kiemelt fejlesztéspolitikai feladatok között szerepel:
• „… az EU Viz Keretirányelv … alapján a fenntartható vízkészletgazdálkodás.
• A táji sokféleség katasztralszintű nyilvántartása (a tájak számbavétele, a tájakra gyakorolt hatások elemzése, a tájak állapotának monitoringja, a változások nyomon követése).
• Az egyedi tájértékek és a kedvező tájkarakter-elemek megőrzése.

Az OFTK megemlíti a tájrehabilitáció és az aktív tájképvédelem fontosságát, de meglehetősen szerényen megfogalmazott támpontokat ad a különleges táj értékekekkel, rekreációs funkciókkal bíró övezetekkel kapcsolatban követendő tervezési feladatok fejezetben (5. 2. 5. 2).

7.2. ábra - Kultúrtájak Magyarországon - Nemzeti Fejlesztés 2020, OFTK koncepció (Nemzetgazdasági Minisztérium, Nemzetgazdasági Tervezési Hivatal, 2012)

A természetvédelmi és rekreációs területtervezés számára is hasznosítható ún. „térhasználati” irányelvek fejezetből érdemes kiemelní a takarékosság és elsősorban bannamezős beruházások gondolatot, a városok „széttartalékának megakadályozását”, valamint a fenntartható tájképvédelmet.

Különösen a természetvédelmi tervezés számára határoz meg fontos elveket a fenti térhasználati alapelvetek részletező szövegszakasz:
A természetvédelmi rekreációs célú tájtervezés (Csorba P. – Horváth G.)

„ A fejlesztések során a természetes folyó és állóvizek partjainak, erdőterületek, hegycsúcsok, szigetek, a fényszennyezéstől mentes éjszakai égbolt, kilátópontok védett természeti és kulturális értékek nyilvános elérésének, megközelíthetőségénének, megszemlélésének lehetőségét nem szabad korlátozni (kivéve a szigorú természetvédelem alá vont területek). Prioritást kell, hogy élvezzenek azok a fejlesztési alternatívák, melyek korábban elzárt területek hozzáférését teszik lehetővé.

- Korlátozásnak minősül, ha a fejlesztések következtében a nem motorizált közlekedéssel a színhelyek megközelíthetősége jelentősen leromlik, a szükséges idő növekszik.

- A fejlesztések nem hivatkozhatóak a közúton kívüli gépjárműhelyek felé, hogy megfeleljen a közösségi közlekedési rendelkezésének és a környezeti szempontból érzékenyen létező tájakon, kielégítő tájékozódásra (természeti és kulturális) rendelkező területeken nem végezhetők.

- A fejlesztések megvalósítása során nem támogatható az igényekhez igazodó közösségi közlekedési eszközökkel nem látogatható új létesítmények, rendezvények megvalósítása.

A fejlesztések nem darabolhatnak fel egységes ökológiai rendszereket és kultúrtájakat, társadalmi csoportok településterületét (pl. nemzetiségek).

A fejlesztések megvalósítása nem eredményezheti ugrásszerű megváltozást az ökológiai hálózat karakterében vagy a közösségi közlekedési rendelkezést. Jelenlegi a többi szemponttól is megfelelő tájékozódásra (természeti és kulturális) rendelkező területeken.

A fejlesztések megvalósítása nem eredményezheti ugrásszerű megváltozást az ökológiai hálózat karakterében vagy a közösségi közlekedési rendelkezést. Jelenlegi a többi szemponttól is megfelelő tájékozódásra (természeti és kulturális) rendelkező területeken.

A biomassza, mint megújuló energiaforrás használata csak kis lépésekben támogatható. Ez az energiaforrás csak akkor tekinthető megújulónak, ha felhasználása a népességhez közel történik, átlátható és nyomon követhető az újratermelése és a felelősség teljes fenntartható használata.

Az országon áthaladó tranzit áruszállítás szervezésére irányuló fejlesztésben prioritást kell, hogy élvezzen a vízi, a vasúti és a kombinált közlekedési formák használatát.

Összegezve ennek a legaktuálisabb országos területfejlesztési, földhasználati koncepciók a számunkra legfontosabb üzenetet, azt mondhatjuk, hogy

- a természetvédelmi tekintetében:
 - a vizes élőhelyek,
 - az ökológiai hálózatok,
 - a települési beépítések és az agglomerálódás elleni lépések

és

- a megközelíthetőség, a közösségi közlekedési elérhetőség javítása érdekében
- a termálisMERI kiemelt szerepe emléthető.

Az egész OFTK koncepció feltűnően gyakran hivatkozik a tájvédelemre, a tájkép, a kultúrtájak és a tájkarakter megőrzésének fontosságára.

A természetvédelmi és a rekreációs térségek fejlődése számára fenntartott térségek területi elrendeződését az új funkcionális térségek című ábrával illusztrálták (7.3. ábra). A térkép szerint a 2030-ig tartó tervezési időszakban a gazdasági-technológiai fejlődési előnyt élvező Budapest-Győr tengely – fürcsa módon – Burgenlandon keresztül! összekapcsolódik a Sopron-Szentgotthárd/Zalaegerszeg tengellyel. Ebben érhetők a Sopron-Kőszegi turisztikai funkcionális folt, amely komoly tájfejlesztési érdekküköszönt generálhat. Azt is nehéz megmagyarázni, hogy Sárvár mivel érdemelte ki az önálló turisztikai funkciójú területként
A természetvédelmi rekreációs célú tájtervezés (Csorba P. – Horváth G.)

szerepeltekését, miközben a Debrecen-Hajdúszoboszló-Hortobágy háromszög, vagy Tokaj-Hegyalja esetében nem látunk ilyen minősítést. (Ráadásul a Hortobágy „jó mezőgazdasági adottságú terület” besorolást kapott!)

7.3. ábra - A természetvédelmi és a rekreációs térségek fejlesztése számára fenntartott térségek – funkcionális térségek – elhelyezkedése.

2. A természetvédelmi területek tervezésének földrajzi vetületei

A természetvédelmi célú tájrehabilitáció esetében törekszünk a természetes, vagy természetközeli állapot helyreállítására. Ez az általános célkitűzés persze nem szó szerint értendő, nyilvánvalóan nem jöhet szóba pl. a vizes élőhelyek folyószabályozásának előtti állapotának rehabilitálása, még kevésbé az elbányászott hegyek „visszaépítése”.

A rehabilitációs tervezés ajánlott sorrendje a legnehezebbtől haladjon a legkönnyebben megoldható beavatkozás felé; tehát pl. indokolt a tájsebek > földtani értékek >erdők > füves térségek > vizes élőhelyek logikai sorrend megtartása.

A tervezés általános szabályai szerint a tervezés állapotfelméréssel kezdődik, amely magában foglalja:
• az érintett terület természeti értékeinek, azok helyzetének felméréseit,
• a természeti értékeket jelentősen befolyásoló, veszélyeztető, károsító tevékenységek bemutatását,
• a tervezett tevékenységek megvalósítás nyomán a várható változásokat,
• valamint a természeti értékek megóvására, esetleges elkerülhetetlen károsodásuk csökkentésére vonatkozó intézkedéseket.

A 3/2008 rendelet szerint az alábbi szerkezetben és tartalommal kell elkészíteni:

Természetvédelmi célkitűzések megfogalmazása

A tervezési területen kívánatos és elérendő célállapotot, illetve az elérendő természetvédelmi célok megfogalmazását tartalmazza tömören, közérthetően, pontokba szedve.

A természetvédelmi kezelési terv kötelező ő en előírt felülvizsgálati időszakán (tíz éven) belül megvalósítandó természetvédelmi célkitűzéseket esetén meg kell jelölni az adott célkitűzés elérésének tervezett idejét.

Természetvédelmi stratégiák ismertetése

A meghatározott természetvédelmi célkitűzések, illetve célállapot elérése érdekében követendő természetvédelmi kezelési irányelveket, illetve a célállapot elérése eszközeinek általános jellegű meghatározását tartalmazza tömören, közérthetően, pontokba szedve.

Természetvédelmi kezelési módok, korlátozások és tilalmak ismertetése

A fejezet természetvédelmi kezelési módok, korlátozások és tilalma részletes, normativ jellegű meghatározását tartalmazza.

A természetvédelmi területek tervezése ma már nem nélkülözheti a zónarendszerek kialakítását, azaz a magterület, a puffer- és az átmeneti üvezet létrehozását, tervezését.

Magterület: elsődleges a megőrzési és kutatási funkció, emberi tevékenység, belépés kivételes esetben megengedhető.

Védőövezet (puffer zóna): a magterületeket veszi körül, feladata ezek védelme, korlátozottan és szabályozott mértékben folyhat rajtuk természetvédelmi célokkal nem ellentétes emberi tevékenység. Folytathatók tudományos kísérletek a természetes vegetáció kezelésére, károsodott területek helyreállítására, fontos az oktatás és az ökoturizmus elősegítése.

Átmeneti üvezet: a természeti erőforrások fenntartható használatainak bemutató területei, rajtuk mezőgazdasági és egyéb emberi tevékenység is folyhat a helyi közösségek, a természeti védelmi szervezetek, kutatók, civil szervezetek és magánszemélyek együttműködésével.

A természetvédelmi területek kezelési leírásában nyilvánvalóan vannak olyan geográfiai részek, amelyek számunkra feladatot adnak, amelyek szakirodalmi hozzáférhetőségével a természeti földrajz részesítésével válik a természetvédelmi területek tervezésének. Ma a geográfia szerepe jobbára kimerült a kistájakataszterből idegődött mondatokkal. Legfőbb ideje, hogy változtassunk szakterületünk ezen a feltűnően szerény pozícióján.

A földrajzi nézőpontot leginkább minden védett terület kezelési tervében, vagy védendőnek nyilvánítandó terület leírásában a területi átmeneti, biogeográfiai egységekhez történő igazgódás képviseli. A tájokatolók erősítéhez az oktatókotoktól a nanochorokon át a kistájakig terjed az a területi skála, amely szóba jöhet, mint egy-egy védett terület természeti területi kerete. Nem kell magyarázni, hogy a védett terület működését, ill. tervezését, kezelését, működtetését nagyban megkönnyíti, hogy a védett terület határa igazodik a természetes vízgyűjtőhöz, geológiai, felszínrajzi, biogeográfiai egységekhez, egységekkel a táj keretekhez. A hazai kistájak kiterjedése tág határok között mozog, a legkisebbek 20-25, a nagyok 1000 km²-t is elérők. Nemzeti Parkjaink átlagos kiterjedése 50, a Tájvédelmi Körzeteké (TK) 5-10, a Természetvédelmi Területeké (TT) 0,2 km². Elővig tehat a kistájak közül néhány beleférhet egy-egy nemzeti parkba, de a TK ill. TT esetében inkább kistáj részletek, örökösporok, nanochorok és örököpök képezik a védett területet. Viszonylag ritka tehát, hogy a védett terület nagyobb természeti táj egységet jelent.
A nemzeti parkok határa néhány esetben valóban lefedi kistájakat, pl. a Bükk-fennsík, az aggteleki Alsó-hegy, vagy a Felső-Örség teljes egészében részét képezi valamely nemzeti parknak. Viszont van példa arra is, hogy a nemzeti park területe kifejezetten mozaikos elrendezésű – legjobb erre a Kiskunsági Nemzeti Parkot említeni. A legnagyobb tájvédelmi körzetek – pl. a Zempléni, Kelet-Mecseki, vagy a Vártesi – a megfelelő kistáj magterületét foglalja el, de a védett terület határa kikerüli a hegysegéperemi településeket. A természetvédelmi területeket többnyire a sűrűn lakott, infrastrukturálisan tagolt területeken jelölik ki, sok esetben a helyrajzi szám kijelölése vonnálnál véget ér a terület védettsége is.

A helyrajzi egységek kusza elrendeződése számos esetben okoz komoly természetvédelmi, kezelési gondot. Sokszor volna szükség a védelem érdekében történő határozott fellépésre a közvetlenül határos üzemekben, nem véletlen, hogy az utóbbi években a nemzeti parkok egyik fő törekvése volt a pufferterület szélesítése, az ökológiai ütközö zóna megerősítése. A kisméretű természetvédelmi foltok esetében ez a területbővítés sokszor ütközik komoly ellenőrdelegéshez, ami miatt a védett terület működésének javítása, fenntartása csak részlegesen valósítható meg. A Natura 2000 területek kijelölése jelentősen csökkentett a többi védett terület potenciális veszélyeztetettségét.

A védett területek megfelelő vízellátása, az egyik leggyakoribb tervezési feladat. A szükséges mennyiségi és minőségű víz kellő időben jöjjön létre. A terület közvetlen ható területlakók számától függően a területnagyságától függően megváltozhat a védett terület átmeneti vízhelyterület. Az átmeneti vízhelyterület azonban nem állítható elő az úgynevezett természetvédelmi állapotok megnyilvánulása miatt. Ezért az általunk meghatározott minimális területnagyságok egyértelműen megerősítik a terület stabilitását.

A természetvédelmi rekreációs célú területek tervezése mellett a leginkább védendő, azonban a leginkább eróziós csökkentéssel is ellátott területek a védett területek közé tartoznak, mint például a tájhatárok és a vízmentes területek. Azok a területek, amelyeken a folyamatos vízhiány miatt vagy a vízmennyiség csökkenése miatt, vagy az agyagásviz által okozott erózió miatt védett területként szolgálnak. Az 1939-1944 között létrehozott 10 hektárnál kisebb védett területek közül szinte egy sem bizonyult életképesnek. Ma talán annyi lezöngőjelet, hogy a védett területek minimális nagyságát legalább 20-30 hektárosnak kell tervezni. Ennél valamivel kisebbre tervezhetőek az állandóan vizes élőhelyek, mocsarak, lápok. A bolygatottság szintje, a közvetlen környék minősége lényegesen befolyásolja a védett terület stabilitását. Közismert, hogy a tájmetria számos jó alaki indikátort kísérletezett ki, pl. a terület/kerület hányadost, amely számottevően befolyásolja a védett terület ökológiai stabilitását.

A védett területek megfelelő vízellátása, az egyik leggyakoribb tervezési feladat. A szükséges mennyiségi és minőségű víz kellő időben jöjjön létre. A terület közvetlen ható területlakók számától függően a területnagyságától függően megváltozhat a védett terület átmeneti vízhelyterület. Az átmeneti vízhelyterület azonban nem állítható elő az úgynevezett természetvédelmi állapotok megnyilvánulása miatt. Ezért az általunk meghatározott minimális területnagyságok egyértelműen megerősítik a terület stabilitását.

A védett területek megfelelő vízellátása, az egyik leggyakoribb tervezési feladat. A szükséges mennyiségi és minőségű víz kellő időben jöjjön létre. A terület közvetlen ható területlakók számától függően a területnagyságától függően megváltozhat a védett terület átmeneti vízhelyterület. Az átmeneti vízhelyterület azonban nem állítható elő az úgynevezett természetvédelmi állapotok megnyilvánulása miatt. Ezért az általunk meghatározott minimális területnagyságok egyértelműen megerősítik a terület stabilitását.

A látogatható természetvédelmi helyek tervezésének néhány geográfiai aspektusa

Az előbbi fejezetben érintett tervezési szempontok érvényesítése elsősorban a leginkább védendő bioszféra magterületekre, a „szentély” jellegű helyszínre vonatkoznak. Ahol a védett terület szabadon, vagy korlátozásokkal, de látogatható státuszba kerül, ott a turisták, vagy a szakmai közösség mozgása számára össze kell hangolni a természetvédelem és az idegenforgalom érdekéért. Ez a cél komoly tervezési konzervenciákkal jár.
A látogatható védett természeti területek tervezése számára a legfontosabb feladat a vendégek mozgását biztosító infrastruktúra biztosítása. A természeti oltalom alatt álló objektumok megtekinthetőségét a természetvédő szakmai szervezetek korlátozó igyekszenek – ami lehet időbeli; tiltott időszakok közbeiktatása, vagy adott időszakban a látogatósámat limitáló előírás. A legelterjedtebb korlátzás a tavaszi madárköltési időszak nyugalmának biztosítása. Ennek Magyarországon évszázados hagyománya van; a vadászat és a madarászat tilalmi időszakait már 1729-ben, a halászat tiltott idejét 1883-ban szabályozták. Jelenleg a hazai védett területeink kb. 20%-án van érvényben ilyen korlátzás.

7.4. ábra - Tátorján tanösvény (Balatonkenese)
Szerencsére a szezonálisit és az időjárás miatt ingadozó a látogatók száma is, másrésztt a látványoló minősége sem azonos egész évben (pl. ritka fajok virágzásakor megnő az érdeklődők száma). Kivétel ez alól a barlangok látogathatósága, ami egyenletesen nagy lehet az év minden szakában. Az élmény minőségét a jelenlévők száma erencsére - erencsére azonban reményt, ösvényen, vagy szünetelnek a szabadtéri programok. Ma már a tanösvények többségénél (pl. Erdős pusztai táj, homokpusztai táj, ártéri táj, dombvidéki kultúrtáj, hegyvidéki erdős táj, stb.) stabillan. A Hortobágy tájéterve pl. így összegezhető: tökéletesen sík szikes puszta, délibáb, elszórt gémeskutak, fehérre kiemelkedés (hegy, domb), mélyedés (völgy, medence), egyéb (síkság, part, szi

3. Természeti, táji értékek minősítése

A kedvező tényeket tervezők fokozatosan eltolódnak az egyre nagyobb tájegységek védelme felé. Az évtervezékekkel ezúttal több fajokra összpontosított személyletet már mára felváltotta az élőhelyvédelmi személylet, s a jövő egyértelműen a tájszintű természetvédelem. Nincs fontos megemlíteni a szabadéktájéprogramok. Ma már a tanösvények többségénél esőbeállók is vannak, de meg kell oldani a személygyűjtést, az ivóvízhez jutást, sőt pl. a kerékpártárolást, hiszen a gyalogosan bejárható tanösvények mellett erős igény van a kerékpárral vagy lovagolva(?) végig nézhető tanösvényekre is.

A védett területek tervezése fokozatosan eltöltődik az egyre nagyobb tájegységek védelme felé. Az évtervezékekkel ezúttal több fajokra összpontosított személyletet már mára felváltotta az élőhelyvédelmi személylet, s a jövő egyértelműen a tájszintű természetvédelem. Nincs fontos megemlíteni a szabadéktájéprogramok. Ma már a tanösvények többségénél esőbeállók is vannak, de meg kell oldani a személygyűjtést, az ivóvízhez jutást, sőt pl. a kerékpártárolást, hiszen a gyalogosan bejárható tanösvények mellett erős igény van a kerékpárral vagy lovagolva(?) végig nézhető tanösvényekre is.

A védett területek tervezése fokozatosan eltöltődik az egyre nagyobb tájegységek védelme felé. Az évtervezékekkel ezúttal több fajokra összpontosított személyletet már mára felváltotta az élőhelyvédelmi személylet, s a jövő egyértelműen a tájszintű természetvédelem. Nincs fontos megemlíteni a szabadéktájéprogramok. Ma már a tanösvények többségénél esőbeállók is vannak, de meg kell oldani a személygyűjtést, az ivóvízhez jutást, sőt pl. a kerékpártárolást, hiszen a gyalogosan bejárható tanösvények mellett erős igény van a kerékpárral vagy lovagolva(?) végig nézhető tanösvényekre is.

A védett területek tervezése fokozatosan eltöltődik az egyre nagyobb tájegységek védelme felé. Az évtervezékekkel ezúttal több fajokra összpontosított személyletet már mára felváltotta az élőhelyvédelmi személylet, s a jövő egyértelműen a tájszintű természetvédelem. Nincs fontos megemlíteni a szabadéktájéprogramok. Ma már a tanösvények többségénél esőbeállók is vannak, de meg kell oldani a személygyűjtést, az ivóvízhez jutást, sőt pl. a kerékpártárolást, hiszen a gyalogosan bejárható tanösvények mellett erős igény van a kerékpárral vagy lovagolva(?) végig nézhető tanösvényekre is.
pontszerűséget jelent, azok ugyanis méretűek, kiterjedésük illetően roppant változatosak lehetnek, sőt akár „földfelszín alattiak” is lehetnek, mint pl. a barlangok).

A cél tehát ezen földtudományi természeti és táji értékek minősítése, azonban többnyire csak jelzők, leírások formájában jelenik meg, holott nagy szükség lenne ezen értékek „kvantitatív” megközelítésére, tehát számszerűsített meghatározásra is. Leginkább talán a természeti és táji értékek kezelőinek maguknak volna szükségük egy- vagy többféle megbízható, számszerű értékelésre, pl. természettudományi szempontból nézve ez megkönnyítené bármiféle fejlesztést, kezelést, de akár – károkozás esetén – büntetéskiszabást is, vagy pl. turisztikai szempontból nézve elősegítené a fejlesztést, tervezést, irányítást, a meglátogatandó célobjectumok (ún. desztinációk) kijelölését.

Számos, a földrajztudomány érdeklődési körébe is tartozó témakörben voltak már kísérletek mindenféle „értékek” számszerűsítésére. Magyarországon is születtek ilyen módszerek, főleg értéktrend szerinti minősítések. Nyilvánvaló azonban, hogy bármiféle módszer alkalmazása előtt tisztáznunk kell, mit is tekintünk „értékek”. Ha felüljük a szótárakat, elég sokféle jelentést találunk az érték fogalmával kapcsolatban. A magyar nyelv értelmező szótárának szerint az érték szó fokozatosan definiálható határozatlan értelmében. A 6. § szerint „egyedi tájértékekre” szerint az érték „apokrón”, „egy tárgy” értelmében, „természeti erőforrásnak nem minősülő környezeti elem, beleértve a védett természeti értéket is”. Nemigen jutunk ki a fogalmi szakuktól, ha ez útjára megközelítésben szereplő fogalmakat is értelmezünk az egy évvel korábbi, 1995. évi környezettudományi törvény 4. (szintén alapfogalmakat meghatározó) §-a alapján, ami szerint természeti érőforrás: „a – mesterséges környezet kivételével – társadalmi szükségek kielégítésére felhasználható környezeti elemek vagy azok egyes összetevői?”, környezet: „a környezeti elemelek, azok rendszei, folyamatai, szerkezete?”, környezeti elem: „a föld, a levegő, a víz, az élővilág, valamint az ember által létrehozott épített (mesterséges) környezet, továbbá ezek összetevői.”

100
Az egyedi tájértékek tulajdonképpen terepértégyak, vagy azok csoportjai, amelyek lehetnek akár természetes, akár mesterséges eredetűek. A táj értékek fogalma azonban összességében nyilvánvalóan jóval tágabb, mint az egyedi tájértékeké, hiszen benne vannak az „élő” természeti (növénytani, állattani), az „élettelen” természeti (földtani, talajtani, felszínalaktani és víztani) és az ember által létrehozott környezet értékei egyaránt, utóbbihoz sorolva az épített környezet értékeit, többek között a kulturális- és ipartörténeti értékeket is. A táj értékeket tehát lehetnek akár természetes, akár mesterséges eredetű terepértégyak, ill. azok csoportjai, együttesei, valamint az általuk alkotott „tájkép”, beleértve ember és táj együttélésének harmoniáját.

4. Kísérletek természeti, táji értékek minősítésére

Pedig kézenfekvőnek tűnik, hogy a táj adottságait valamilyen módon számszerűsítsük, azak konkrét, összehasonlítható rangsorolását is lehetővé tevő számokkal, szá mjegyekkel jelezzük ki. Az ilyen típusú értékelés lehet abszolut (tehát pénzben kifejezhető értéken alapuló) vagy relatív (tehát egymáshoz viszonyított rangsort felállító, csak egymáshoz viszonyított fontosságot megadó). A táji, természeti értékek jelentős része materiálisan sokszor színt megfoghatatlan, az abszolút érték szinte meghatározhatatlan, ill. ha valamit mégis meghatározzunk, akkor az inkább csak eszmei értéknek tekinthető, amely a természeti képződmények ezen eszmei értékének meghatározása közgazdaságtanra nem eléggé meggyőző, ami a természet- és tájvédelem érdektörvényesítéséérték gyakran határolja (Csorba P. 2003). Mindezek alapján képződmények nyilvánvalóan érdektörvényesítéséérték alapján kialakítjuk.

Például egy természetes terepérték példája az egyedi tájérték, amely a természeti képződmények egyedi, egyértelmű értékét ábrázolja, amely a táj adottságait valamilyen módon számszerűsítsük, azak konkrét, összehasonlítható rangsorolását is lehetővé tevő számokkal, számjegyekkel jelezzük ki. Az ilyen típusú értékelés lehet abszolut (tehát pénzben kifejezhető értéken alapuló) vagy relatív (tehát egymáshoz viszonyított rangsort felállító, csak egymáshoz viszonyított fontosságot megadó). A táji, természeti értékek jelentős része materiálisan sokszor színt megfoghatatlan, az abszolút érték szinte meghatározhatatlan, ill. ha valamit mégis meghatározzunk, akkor az inkább csak eszmei értéknek tekinthető, amely a természeti képződmények ezen eszmei értékének meghatározása közgazdaságtalag nem eléggé meggyőző, ami a természet- és tájvédelem érdektörvényesítését gyakran határolja (Csorba P. 2003). Mindezek alapján képződmények nyilvánvalóan érdektörvényesítéséérték alapján kialakítjuk.

Például egy természetes terepérték példája az egyedi tájérték, amely a természeti képződmények egyedi, egyértelmű értékét ábrázolja, amely a táj adottságait valamilyen módon számszerűsítsük, azak konkrét, összehasonlítható rangsorolását is lehetővé tevő számokkal, számjegyekkel jelezzük ki. Az ilyen típusú értékelés lehet abszolut (tehát pénzben kifejezhető értéken alapuló) vagy relatív (tehát egymáshoz viszonyított rangsort felállító, csak egymáshoz viszonyított fontosságot megadó). A táji, természeti értékek jelentős része materiálisan sokszor színt megfoghatatlan, az abszolút érték szinte meghatározhatatlan, ill. ha valamit mégis meghatározzunk, akkor az inkább csak eszmei értéknek tekinthető, amellett, hogy a természeti képződmények ezen eszmei értékének meghatározása közgazdaságtalag nem eléggé meggyőző, ami a természet- és tájvédelem érdektörvényesítését gyakran határolja (Csorba P. 2003). Mindezek alapján képződmények nyilvánvalóan érdektörvényesítéséérték alapján kialakítjuk.

Például egy természetes terepérték példája az egyedi tájérték, amely a természeti képződmények egyedi, egyértelmű értékét ábrázolja, amely a táj adottságait valamilyen módon számszerűsítsük, azak konkrét, összehasonlítható rangsorolását is lehetővé tevő számokkal, számjegyekkel jelezzük ki. Az ilyen típusú értékelés lehet abszolut (tehát pénzben kifejezhető értéken alapuló) vagy relatív (tehát egymáshoz viszonyított rangsort felállító, csak egymáshoz viszonyított fontosságot megadó). A táji, természeti értékek jelentős része materiálisan sokszor színt megfoghatatlan, az abszolút érték szinte meghatározhatatlan, ill. ha valamit mégis meghatározzunk, akkor az inkább csak eszmei értéknek tekinthető, amellett, hogy a természeti képződmények ezen eszmei értékének meghatározása közgazdaságtalag nem eléggé meggyőző, ami a természet- és tájvédelem érdektörvényesítését gyakran határolja (Csorba P. 2003). Mindezek alapján képződmények nyilvánvalóan érdektörvényesítéséérték alapján kialakítjuk.
Az ökoszisztémá működésének jellemzői

Közeg
Levegő
Víz
Föld

- a felszíni rétegben végbemenő geológiai folyamatok (pl. tektonika, érc-képződés),
- geomorfológiai tulajdonságok és folyamatok (erősítés, mállás, sugárzásvissza-kerületi képesség),
- talajfolyamatok és -talajdonságok (textúra, termőképesség, biológiás aktivitás)

Élőhely
- a vegetáció jellemzői (szerkezet, biomassza, légtartás, párolgás),
- az állat- és növényvilág (faj- és biológiai törzssorozat, táplálkozási érték),
- életközösségi tulajdonságok (tápláléklánk-talajközösségi kölcsönhatások, felbomlás),
- konzerváló érték/integritásdúsodás (sértetlenség, egyediőség, egyedi előfordulás)

A táji értékek minősítése azonban akkor is nagyon fontos, ha eltekintünk a számszerűsítés kérdésétől, különösen a rekreációs célú tájtervezés számára, hiszen a táji érték, azon belül különösen az esztetikai érték és a táj vonzereje között egyenes arányosság van. Legalább ilyen fontosságú, sőt talán még jelentősebbek a rekreáció szempontjából a Csorba P. által szelíd kultúrájaknak nevezett térségek, amelyek esetében „nincs lélegzetelállító attrakció, viszont annak értékesebb csőnd, természettőzésg, harmonikus beépítettség”.

Értékkritériumok természeti táji értékek meghatározásához

A fenti kritériumokat (kivéve esetekben összefoglalva, mások esetében viszont szétbontva) foglalja össze a 7.2. táblázat, amelyben utalás történik arra is, hogy az egyes kritériumok szempontjából mi számít értékesnek, illetve hogy egy korábban említett pontszámos értékelés esetén mit tükrözhettek az adandó pontszámok.

7.2. táblázat. Kritériumok természeti értékek minősítésére

<table>
<thead>
<tr>
<th>Kritériumtípus</th>
<th>Értékelése</th>
<th>Pontozása</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egyedülállóság, ritkaság</td>
<td>A képződmények előfordulási gyakoriságára utal; az egyedülállóság szélsőségesen ritka előfordulás</td>
<td>A képződménytípusnak kisebb a területi elterjedése, minél kevesebb az előfordulásainak száma, értékesebb</td>
</tr>
<tr>
<td>Területi jellemzőség</td>
<td>A képződmények adott területre jellemző voltát, tehát a tipikusságot és a reprezentatitivitását összegzi</td>
<td>A természetes körülmények között Minél jellemzőbb a képződmény a legnagyobb területi elterjedésben, területre, annál magasabb a pontszám, illetve leggyakrabban előforduló, pontszám legjellegzetesebb képződmények értékesek</td>
</tr>
<tr>
<td>Természetesség</td>
<td>Az emberi hatásoktól való átalakítottság fókát jelzi; célszerű úgy értelmezní, hogy a képződmény jelenlegi állapotában mennyire tartalmaz antropogén zavarára utaló jegyeket</td>
<td>A természeteshez közelebbi állapotú Minél természetközelibb és minél kevésbé zavart képződmények kevésbé zavart a képződmény, értékesebbek annál magasabb a pontszám</td>
</tr>
<tr>
<td>Típusosság</td>
<td>Az adott képződménytípus általános Minél típusosabb a képződmény, jellegzetességeit megjelenítő annál magasabb a pontszám képződmények értékesek</td>
<td></td>
</tr>
<tr>
<td>Fejlettség</td>
<td>Azt jelzi, hogy egy képződmény mennyire tartalmazza az adott képződménytípus általános jellegzetességeit</td>
<td>A kialakulásuk folyamatait és Minél fejlettebb a képződmény, képződési körülményeit jól, annál magasabb a pontszám szemléletesen megjelenítő</td>
</tr>
</tbody>
</table>
mennyire szemléletesen tárja elénk, képződmények értékesek
mennyire tükrözi a képződménytípust létrehozó folyamatokat és a képződési körülményeket

A képződményt alkotó elemek Minél kevésbé homogén egy változatossága, a részlet- és képződmény, annál magasabb a mikroformák gazdagsága értékesebb pontszám

Sokféleség

A képződmény megjelenésének változatosságát, a kisebb-nagyobb pozitív és negatív formák gyakoriságát jelzi

A veszélyeztetett képződmények Pontszámmal nem célszerű könnyebben elpusztulhatnak; kifejezni esetleges érték voltukat az adja, hogy eltűnésük értékvesztést eredményezhet

Veszélyeztetettség

A képződmény emberi beavatkozással szembeni veszélyeztetettségét fejezi ki

Egy geológiai szerkezetet vagy egy Minél jobban tükrözi egy képződmény elhelyezkedése révén feltáró géomorfológiai alakzatot jól elhelyezkedése révén feltáró a szerkezetet vagy a formát, annál magasabb a pontszám

Elhelyezkedés

A képződményben megjelenő geológiai szerkezet vagy geomorfológiai alakzat jellegzetes elhelyezkedése, kirajzolódása, amiből pl. következhetnek lehet a kialakulás folyamatára

A méretükkel a formát jól érzékelhető, ill. a környezetét uraló, nagyobb távolságból jól látható képződmények értékesebbek

Méret

Azt fejezi ki, hogy egy képződmény mérete mennyire teszi alkalmassá egy jelenség érzékelhetetlenségét, bemutatását, ill. hogy mennyire uralkodik a képződmény látványa a környezetén

A számottevő tudományos Minél nagyobb a kutatási jelentőséggel bíró, kutatásokat keltő és vonzó képződmények értékesek pontszám

Kutatási jelentőség

Azt fejezi ki, hogy egy képződmény milyen lehetőségeket biztosít tudományos kutatásokra, mennyire van tudományos jelentősége

A számottevő tudományos Minél nagyobb a kutatási jelentőséggel bíró, kutatásokat keltő és vonzó képződmények értékesek pontszám

Oktatási-nevelési jelentőség

Azt fejezi ki, hogy egy képződmény mennyire alkalmaz ismeretek terepí bemutatására, ami által az adott képződménytípus megismerése és létrehozó folyamatok megértése könnyebbé válik

Az oktatási célú bemutatásra, Minél nagyobb az oktatási-ismeretterjesztésre alkalmazás nevelési jelentőség, annál magasabb a pontszám

Látványosság

Egy képződmény esztétikai vonzereje, tájképi jelentősége, tájesztetikuma, köznapian szólva szépsége

A látványos, szép, vonzó Minél látványosabb egy képződmény, annál magasabb a pontszám
A természetvédelmi rekreációs célú tájtervezés (Csorba P. – Horváth G.)

Rekreációs jelentőség

Azt fejezi ki, hogy egy képződmény rendelkezik olyan tulajdonságokkal, amelyek testi-lelki kikapcsolódásra szolgálhatnak

Elérhetőség

Egy képződmény elérhetősége a nagyobb turisztikai kibocsátó központ felől személygépkocsival vagy tömegközlekedési eszközök segítségével

Megközelíthetőség

Egy képződmény gyalogos megközelíthetősége arról a helyről, ahol a látogatók kiszállnak a tömegközlekedési eszközből vagy a személygépkocsisóból

Történetiség

Egy képződményről rendelkezésre álló tudományos és köznapi ismeretek, információk mennyisége

Kezelhetőség

Azt fejezi ki, hogy az adott képződmény milyen feltételeket kínál az ott található értékek megőrzésére

Előhelyi jelentőség

Azt fejezi ki, hogy az adott képződmény milyen feltételeket kínál az ott megtelepített élővilág fennmaradására, ill. hogy milyen különleges élővilággal rendelkezik

Egy képződmény jó úthálózat vagy Minél inkább elérhető egy tömegközlekedési kapcsolatok révén képződmény, annál magasabb a pontszám a való elérhetősége növeli az értékét pontszám

Egy képződmény viszonylag könnyű Minél könnyebben megközelíthető gyalogos megközelíthetősége, pl. egy képződmény, annál magasabb jelzett utak megléte növeli az értékét a pontszám

Azok a helyek, amelyekről hosszú Minél több adat, forrás áll egy távú adatsorok, megfigyelések, képződménnyről rendelkezésre, feljegyzések állnak rendelkezésre, annál magasabb a pontszám értékes

Azok a képződmények, amelyek Minél jobbak a feltételek azó Minél jobbak a feltételek a vagy a terület lezárása a képződmény kezelésére, annál természetvédelmi értékét növeli magasabb a pontszám

A könnyebben megszervezhető örzés Minél jobbak a feltételek a terület és a képződmény képződmény kezelésére, annál természetvédelmi értékét növeli magasabb a pontszám

Azok a képződmények, amelyek Minél jobbak a feltételek az nagy faj- és egyedszámú élővilág élővilág fennmaradására, és minél számára jelentenek élő-, táplálkozó-, gazdagabb és értékesebb ez az szaporodó-, vagy bővőhely, vagy élővilág, annál magasabb a ritka, veszélyeztetett fajok élőhelyei, pontoszám természetvédelmi szempontból értékesek

Élőhelyi jelentőség

Azok a képződmények, amelyek Minél jobbak a feltételek az nagy faj- és egyedszámú élővilág élővilág fennmaradására, és minél számára jelentenek élő-, táplálkozó-, gazdagabb és értékesebb ez az szaporodó-, vagy bővőhely, vagy élővilág, annál magasabb a ritka, veszélyeztetett fajok élőhelyei, pontoszám természetvédelmi szempontból értékesek

5. Természeti és rekreációs célú tájtervezés egyes szempontjai egy mintaterületen

A természetvédelmi rekreációs célú tájtervezés (Csorba P. – Horváth G.)

nemzetközi tekintetben nem sorolható a kiemelkedően attraktív tájak elvonalához, azért rejt olyan lehetőségeket, amelyek kihasználása után bekapcsolódhat akár a nemzetközi idegenforgalomba is (Drexler Sz. et al. 2003). A turizmus növekedése azonban komoly veszélyeket is rejt, hiszen a növekvő igény a tömegeket befogadó látogató- és pihenőövezetek iránt jelentős infrastruktúra-képzést igényel, ami számottevő tájátalakítást eredményez. Olyan tájhasználatok jelentik meg, amelyek negatívan befolyásolják a táj állapotát; mivel nő a tájterhelés, ősi nyomás nehezedik a természetközeli tájakra, ami könnyen tönkretetheti, megsemmisítheti a táj, ezen belül a földtudományi értékek egy részét. Magyarországon a tájvédelem alapvetően természethelmi vagy rekreációs céljait szolgál, a tájtervezésnek ezért az értékek analitikus és szintetikus feltárása mellett különös figyelmet kell fordítania tájvédelmi intézkedésekre is, olyanokra, amelyek megőrzik vagy fenntartják a táj jellegzetes vagy sajátos vonásait (Csorba P. et al., 2001), ugyanakkor fontos, hogy ezek az intézkedések ne csak passzív védelemre korlátozódjanak.

A természeti és rekreációs célú tájtervezésnek egészen sajátos szempontokra is ki kell terjednie. Pl. a kistáj É-i részét, a Medves fennsíkját és környékét ugyan jól megtervezett turistautak hálózókéz, de és jelenlent az egyéb utak aránya is, mégis irányítatlanul ennek nagysága miatt – főként mert nem elégéssé még az információ az érdekképekére és a látványalól – gondot jelent még a gyalogos turizmus is, amely esetenként a fokozottan védett területeken is megjelenik és károkat okoz. Sőt, a tapasztalatok szerint egy terület fokozott védettségének köszönhető válása éppen nem az érintetlenség megőrözésére ösztönzi az embereket, hanem inkább ezen területek meglátogatásátára. Még rosszabb, hogy egyre gyakrabban a táj tönkretéko- terepmotorozás és teremképzőkárosodás, noha a szük turistaösszevénnyeink nem biztosítanak ahhoz megfelelő feltételeket. Robbanásszerűen növekszik az autós turizmus is, és különösen elszomoríthat a világsztálinál okozott kárk. A Medves területén még autóversenyeket is rendeztek, pl. földtúton gyorsasági szakasz. Mindezt igaz az intenzív terhelést jelent a tájra nézve és nagymértékben veszélyezteti a földtudományi értékeit (Drexler Sz. et al. 2001, 2003).

A társadalmi tényezőket vizsgálva megállapítható, hogy a jelentős bánászati-ipari múlt ellenére magas a térségben a szakkapcsolat munkaerő aránya, és az arányok még romlaniak is, mert megfigyelhető a szakkapcsott fiatalok elvándorlása. Szükség van valamilyen kitörési pontra, és – egy a helyi vezetők körében lebonyolított felmérés alapján – az az általános vélemény, hogy a közösséghez vezető egyik legfontosabb út a turizmust és a rekreációs lehetőségek és fejlesztése (Judit B. 2000). A tájtervezéseknek ezért meghatározó mértékben figyelembbe kell venni a tudatos fejlesztéssel kialakított fenntartható turizmust – e térségben főleg az öko- és geoturizmus – lehetőségeit és követelményeit.

A turizmus igényei mellett a tájtervezés során figyelni kell a területfejlesztéssel foglalkozó szervezetek által kidolgozott egyéb fejlesztési programokra is. A Medves-vidéket és környezetét felölelő Salgótarjáni kistérség esetében pl. a fejlesztési tervek (Terra Studio 2001) abból indulnak ki, hogy a térség adottságait folytán nem játszható jelentős szerepet az ország mezőgazdaságában, de olyan tevékenységeket mégis célszerű megvalósítani és elősegíteni, amelyek helyi erőforrásokra épülnek. Pl. mivel jelentős az elparlagosodás, ezért fontos cél lehet a parlongon hagyott földek befejeződését (de itt már a természethelmi és a gazdasági szempontok szembkerülhetnek, a területfejlesztők szerint ugyanis celszérum lenne új energiaerődfőléteése, amit a természethelmi hatóságok nem pártolhatnak). Kevesébé ütköznek azok a tervek, hogy pl. szükséges lenne talajeróziót csökkenteni, vízgazdálkodást javítani. Mindezt ugyanakkor fontos, hogy megfelelő felkészületet kell az embereknek biztosítani, és hogy a tájfejlődésükhez az egészségüket (Drexler Sz. et al. 2001, 2003).

A társadalmi tényezők vizsgálásával megállapítható, hogy a jelentős bánászati-ipari múlt ellenére magas a térségben a szakkapcsolat munkaerő aránya, és az arányok még romlaniak is, mert megfigyelhető a szakkapcsott fiatalok elvándorlása. Szükség van valamilyen kitörési pontra, és – egy a helyi vezetők körében lebonyolított felmérés alapján – az az általános vélemény, hogy e kitöréshez vezető egyik legfontosabb út a turizmust és a rekreációs lehetőségek és fejlesztése (Judit B. 2000). A tájtervezéseknek ezért meghatározó mértékben figyelembbe kell venni a tudatos fejlesztéssel kialakított fenntartható turizmust – e térségben főleg az öko- és geoturizmus – lehetőségeit és követelményeit.
mentén húzódó Medves magosa vagy a Szilvás-kő Rónabánya felé eső utakat, ezekben az esetekben törekedni kell a tájidegen fajok kiküszöbölésére és a békeállítás létrehozására.

Egy másik szempont, amit figyelembe kell venni, a kilátópontokból látható táj látványának megőrzése. A Karancsi kilátótornyákból, Salgó várból, a Kis-Salgóról, a bámai Nagy-körül, a Szilvás-kő bazaltoszlopai felett kilátópontokról nemcsak kapzáratos a kilátás, hanem az 180°–360° közötti körképeknek oktatási és közművelődési célból is nagy a jelentősége. De nemcsak a kiemelkedő pontokról látható kilátást kell megőrizni, vannak ugyanis egyéb szép kilátópontok is, pl. a Magyar-bánya meddőhányójának széle és a Balassi-pihenő a Somos-kő várának legszebb látványát nyújtja; a tervezés egyik fontos eleme lehet ezeknek a pontoknak a meghatározása és esetleg egy esztétikai élményt nyújtó „festői út” nyomvonalának kijelölése (Karancsi Z. – Horváth G. 2004, Karancsi Z. – Katona Z. 2008).

A tájtervezés során az építmények szerepe, helyzete számos konfliktus forrását jelentheti. Alapelve, hogy a beépítés erősen csökkenti a táj értékét, különösen ha az valamilyen hivalkodó tájidegen stílust jelenít meg. Ám – mint erre fentebb már történt utalás – bizonyos infrastruktúra-fejlesztés vagy rekreációs célú beépítések nem kerülhetők el; ezekben az esetekben törekedni kell a táj alól való harmoniá megteremtésére. Hasonlóképpen fontos a már létező építmények sorsa, helyzete. Nyilván a kultúrtörténeti értékek megőrzése alapvető cél, de sokuk állapota aggasztó, fennmaradásuk, felújításuk feltétel gyakran az építmények új funkciókkal való ellátása, ami elkerülhetetlen a fejlesztési célkitűzésektől. Bizonyos infrastruktúra-fejlesztők felújításával a tájékonnyító hatásokkal való ellátása, ami elkerülhetetlen a fejlesztési célkitűzésektől.

A Medves-vidék ilyen szempontból viszonylag kedvező helyzetben volt, mindig is kevés volt a megtelepülés részletes tájidegen szépsége. Az építmények nemcsak a táj látványát megőrizik, de a táj környezetére is befolyásolják azokat. A Medves-vidék hasznos, természeti és történelmi értékeiből áll, de nemcsak az építmények sorsa, helyzete, hanem a táj felett lévő épületegyüttes megszüntetése lenne célszerű.

A Medves-vidék északi, frekvenciától részének két egykori települése azonban azt mutatja, hogy település és táj konfliktusának feloldása igenkészen elhunyt utakat kívánhat meg.

A Medves-vidék számos települése azonban azt mutatja, hogy település és táj konfliktusának feloldása igenkészen elhunyt utakat kívánhat meg.

Az egyik település a Szilvás-kő lábánál, a Cered felé vezető országút mentén fekvő Rónabánya, ez az egykori, a Salgótarjáni Köszénbánya Rt. által 1891–1910 között létrehozott, tervszereű kialakított bánya szokkedő, párhuzamos utcason, egyforma épületeivel, egykori középületeivel (iskola, kultúrház). A táj népszerű bánya, amit a települést megőrizett, az építmények sorsa, helyzete, a kilátás és a táj környezetének megőrizése biztosítása stb. alapvető cél, de sokuk állapota aggasztó, fennmaradásuk, felújításuk feltétel gyakran az építmények új funkciókkal való ellátása, ami elkerülhetetlen a fejlesztési célkitűzésektől.

A Medves-vidék számos települése azonban azt mutatja, hogy település és táj konfliktusának feloldása igenkészen elhunyt utakat kívánhat meg.

Az egyik település a Szilvás-kő lábánál, a Cered felé vezető országút mentén fekvő Rónabánya, ez az egykori, a Salgótarjáni Köszénbánya Rt. által 1891–1910 között létrehozott, tervszereű kialakított bánya szokkedő, párhuzamos utcason, egyforma épületeivel, egykori középületeivel (iskola, kultúrház). A táj népszerű bánya, amit a települést megőrizett, az építmények sorsa, helyzete, a kilátás és a táj környezetének megőrizése biztosítása stb. alapvető cél, de sokuk állapota aggasztó, fennmaradásuk, felújításuk feltétel gyakran az építmények új funkciókkal való ellátása, ami elkerülhetetlen a fejlesztési célkitűzésektől.
A természeti és rekreációs célú tájtervezés különösen fontos a kistáj nagyobb összefüggő védett területéhez, a Bükk Nemzeti Park Igazgatósága alá tartozó Karancs–Medves Tájvédelmi Körzethez (TVK) tartozó területegységek esetében. A különleges felszíni formák, a ritka növény- és állatfajok miatt a mintegy 7000 hektáros tájvédelmi körzetben belül több mint 450 ha fokozottan és szigorúan védett területet is kialakítottak; ezek közé tartoznak a fentebb már különféle szempontok alapján tárgyalt egyes salgóita és szilvásai, ahol mellőzni kell a turizmus fejlesztését. Ilyenek pl. a Medves fennsíkját ÉK és K felől határoló közlekedés szüntetendő, a közlekedés korlátozandó stb.; mindez biztosíthatja ugyan a sokféle értéket őrző táj fennmaradását, ám ugyanakkor szinte lehetetlenné teszi megismertetését. Hasonlóképpen az erős védettséget elvége, de korlátozott mértékben, szakvezetővel látogatható B zóna (kezelési övezet) megismertetése is korlátozott. Egészenében a korlátozások egyértelműen az értékek védelmét szolgálják. Ezzel szemben a látogatók által felkereshető C zóna (bemutató övezet) az idegenforgalmi fejlesztések szintere, ahol a leglátogatottabb kirándulóképzőkent és a hozzájuk kapcsolódó infrastrukturális létesítmények terhelése azzal fenyeget, hogy hiába biztosított elvileg a természeti értékek védelme, azok gyakorlatilag – az antropogén hatások következtében – erősen veszélyeztetettek (Drexler Sz. et al. 2001).

Tájvédelmi-tájtervezési szempontból természetesen az lenne kivánatos, hogy a fokozottan védett területek, a kis kiterjedésű, de a változatosságot növelő élőhelyek, a sérülékeny értékek (tehát főleg az A és B zónák) érintetlen maradhassanak, annak a valóság más. Néhány jelentős földtudományi értékké bőrő, sűrűn látogatott területről egyszerűen nem is lehetne kizárni a látogatókat. Nagyobb baj, hogy olyan sérülékeny területeken, mint pl. a Gortva-völgy, a szigorú védettséget ellenére évről évre nő az illegális látogatók száma. Néhány kiemelt helyszín esetében pedig a tájhasználat pár évvel belül elérheti a terület ökológiai teherbíró határát. Ezenkívül kevésbé ismeretes és elsősorban a tájtervezési és ökológiai kérdésekben szolgáltatott információk vannak, vagy a benne található irányelvek nem vagy nem teljesen valósíthatók meg az egy kizárólagosan vagy korlátozott korlátozásokban.

1. A természeti és rekreációs célú tájtervezés különösen fontos a kistáj nagyobb összefüggő védett területéhez, a Bükk Nemzeti Park Igazgatósága alá tartozó Karancs–Medves Tájvédelmi Körzethez (TVK) tartozó területegységek esetében. A különleges felszíni formák, a ritka növény- és állatfajok miatt a mintegy 7000 hektáros tájvédelmi körzetben belül több mint 450 ha fokozottan és szigorúan védett területet is kialakítottak; ezek közé tartoznak a fentebb már különféle szempontok alapján tárgyalt egyes salgóita és szilvásai, ahol mellőzni kell a turizmus fejlesztését. Ilyenek pl. a Medves fennsíkját ÉK és K felől határoló közlekedés szüntetendő, a közlekedés korlátozandó stb.; mindez biztosíthatja ugyan a sokféle értéket őrző táj fennmaradását, ám ugyanakkor szinte lehetetlenné teszi megismertetését. Hasonlóképpen az erős védettséget elvége, de korlátozott mértékben, szakvezetővel látogatható B zóna (kezelési övezet) megismertetése is korlátozott. Egészenében a korlátozások egyértelműen az értékek védelmét szolgálják. Ezzel szemben a látogatók által felkereshető C zóna (bemutató övezet) az idegenforgalmi fejlesztések szintere, ahol a leglátogatottabb kirándulóképzőkent és a hozzájuk kapcsolódó infrastrukturális létesítmények terhelése azzal fenyeget, hogy hiába biztosított elvileg a természeti értékek védelme, azok gyakorlatilag – az antropogén hatások következtében – erősen veszélyeztetettek (Drexler Sz. et al. 2001).

1. Területek, ahol mellőzni kell a turizmus fejlesztését. Ilyenek pl. a Medves fennsíkját ÉK és K felől határoló völgyek, erdők (ezek turisztikai igénybevétele napjainkban még elhanyagolható, de mértéke veszélyesen emelkedett); a Gortva-völgy, a szigorú védettséget ellenére évről évre nő az illegális látogatók száma. Néhány kiemelt helyszín esetében pedig a tájhasználat pár évvel belül elérheti a terület ökológiai teherbíró határát. Amennyiben pedig a tájhasználat egyes elemei (gyakori gépjárműforgalom, erdei utakon száguldó kerékpárosok, túl nagy idegenforgalom) meghaladják a pszichológiai teherbíró hatatlanul elveszíti vonzerejét.
kulturált turisták jelenlétére és az ebből fakadó csekély zavarásra kevésbé érzékenyek. Ide kell sorolni a kevésbé híres és markáns homokkö- és riolittufa-képzdönményeket, -területeket is, amelyek felszínei könnyen a „bakterszórótió” áldozatátvá válnak.

4. „Vonalas attrakciók” (sétutak, tanosvények, turistautak stb.) kialakítására alkalmas területek. A tájvédelem érdekében a utak, ösvények vonalvezetésének kialakításánál célszerű arra törekedni, hogy minden turisztikai központból – ilyen központként és kiindulópontként szolgálhat pl. Rónabánya, Rónafalu, Salgó, Eresztvény és Somoskő, ill. Medvespusza – induljanak ki ösvények, amelyek elérhetővé teszik a másik központot, valamint számos látványváltást, azok kerüljék el az érzékeny zónákat, továbbá az ösvények lehetetlen körutak legyenek, tehát tárjának vissza kiindulási helyükre. Az új keletű igények (lovaálás, tereperépkerékpározás, sütítés stb.) számára az elkerülhetetlen, ezért a lakosság és látogatók szórakozási igényeinek megfelelése célja azonban számos infrastrukturális beruházásra is igénybe veszik. Ezek a helyek a „városból kisabadalók”, a települések közelében világosra kialakított utak és közel lévő sporttelepek, a strand-környezet kialakítása és felújítása is képes biztosítani különféle rekreációs és természeti élményt. Ez azonban arra vonatkozik, hogy az e célra vállalt területek gyakran nagy tömegek fogadására kerülnek, melyek tekintetében a helyhelyezést fontossági törvények és környezeti adatokon kívül értékelni kell.

5. Területek, amelyek terhelhetők, új attrakciók kidolgozására javaslhatók. Ilyenek elsősorban a települések belterületi és környezetében lévő területek, melyek nagy tömegek fogadására kerülnek, tehát a lakosság és látogatók szórakozási igényeinek megfelelése céljára szükséges infrastrukturális beruházásokra is szükség van.

dly), s a mondani való lényege, hogy ezeket az elemeket minél gazdagabban kell tenni.

Ez a gondolatmenet áltozott a harmadik megközelítésbe, amely \textbf{tervezői oldalról} vonalba vonja a kérdést. Az angol nyelvű irodalomban tájok között alatt leginkább Landscape architecture (műszaki tartalmú tájépítészet) művekkel találkozunk. Az építészek és a „városrendezők” véleménye szerint az urbanizációval foglalkozó felméréseként tudományt, ami követi az ember, környezete és a világmindenség tengelyét. Ehhez a kérdéskör \textbf{racionális} felhasználását képezi a városökológiai alapvető feladatát.

A társadalom és földrajzi környezete közötti kapcsolatok és konfliktusok jellegzetes találkozói pontja a település. A városökologia ezeket a konfliktusokat, e meglehetősen szövevényesen összetett társadalom-környezet rendszert elemzi. A településeken az egyébként már meglevő környezeti problémák hangsúlyosabbná válnak és újakkal egészülhetnek ki. Az új konfliktusok és megjelenési helyeinek feltárása, ill. ezek között is kiemelten a városi terület-felhasználással, tervezéssel kapcsolatos döntések széleskörű tudományos megalaposzása képezi a városökológiai alapvető feladatát.
településtervezés szempontrendszere inkább építészeti indítatású. A legfontosabb szabályozói az 1997. évi LXVIII. törvény az épített környezet alakításáról és védelméről, amely szerint településrendezési tervet (ezek belül településszerkezeti tervet, amely meghatározza a település alakításának, védelmének lehetőségeit, fejlesztési irányait, az egyes területrészek felhasználásának módját, továbbá szabályozási kerettervet és szabályozási tervet is) kell készíteni. A 253/1997 sz. rendelet meghatározza, hogy a településszerkezeti tervben szakági terveket is kell készíteni (pl. tájrendezési, környezetalkatás, közlekedési - hálózati, csomóponti és kereszteszeti-, közművesítési és hírközlési részek).

Ezek a megközelítések kapcsolatban állnak egymással. Ezt szemlelteti Lichtenberger (in: Sukopp et al. 1993) várostervezési alapállású földrajzi koncepciója. Szerinte a városökológia egy triád része, amelynek másik két eleme az ökológiai várostervezés és a szociálgeográfiai (inkább szociológiai lenne indokolt) városkutatás. Nem nagyon nehéz bizonyítani, hogy a három kategória (és mint a megközelítések ből láttuk akár több is értelmezhető lenne) között a határ nem merev, a „célok” (pl. városklimatológia, városi biotóp-vizsgálat, zöldfelület/mintázati, orvosi terv, környezet-gazdaságtani elemzés) függvényében egyik vagy másik irányba eltolódhat.

A leginkább összetettnek, integratívnak az ökológiai várostervezés tűnik.

8.1. ábra - A városnagyság és az életminőség kapcsolata (Wentz 1976 után)

A városökológia terminus technicusnak sok arca van. Véleményünk szerint ez a fogalom legegyszerűbben a tájökológiából vezethető le, ennek a kategóriáinak része. A város sajátos prototípusa az urbán-ipari ökorendszereknek, pontosabban annak az emberi tevékenység hatása alatt álló és sajátos funkciókkal rendelkező ökorendszer-komplexumnak. (Utaltunk rá, hogy nehéz helyzetbe kerül azonban az, aki ezek alapján az angol
nyelvű irodalomban az „urban ecology” címszó alatt keres forrásanyagot. Az angol nyelvterületen ugyanis a városőkológia nem természettudományi fogalom, hanem történeti okok miatt jellemzően – és elég merev határokkal – a társadalomtudomány, pontosabban a sociológia fogalomban tartozik.

A város dinamikailag egységes rendszert képez. A természeti, társadalmi és mesterséges típusokba sorolható részéi szoros kölcsönhatásban vannak egymással. A város új, megváltozott ökológiai (és társadalmi – gazdasági) feltételeket hoz létre; feltételeket, melyek jelentősége eltér az új körüli természetes táj ökológiaiáll determináli jellegétől. Így megváltozott, urbanizált környezet kutatására jött létre az interdisciplináris jellegű városőkológia, amely a (környezeti földrajz és a) tájökológiának településekre vonatkozó, gyakran ökológiai fogalmakra épülő, és egész a biotópok szintjéig kiterjedő intenzív kutatásainak része.

A város mint ökológiai rendszer

A városőkológia természettudományi szempontból a geo- és bioökológiai funkciók összefüggéseit, kapcsolódásait vizsgálja. A városi ökológiai rendszer sajátosságának kezdeményező, hogy benne az ökológiai faktorok mellett ökonómiai-társadalmi tényezők is fontos szerepet kapnak. Ha a városőkológia (biológiai) ökológiai értelemezésénél maradnánk, akkor az elemzés középpontjában a város flórájának és faunájának átfogó elemzése állna. A kötetben a városőkológiai elemzésnél a humánökológiai aspektusokra koncentrálunk. Főként Szeged példáján olyan, városrészkenként sajátosan alakuló összefüggéseket emelünk ki, mint a levegőbeli szennyezőanyagok feldúsulása, az élőhelyek állapota, vagy a beépítettség, terület-felhasználás és az érzetklima kapcsolata.

Az már régóta ismert, hogy a természeti környezeti tényezők közül több mértékű pufferkapacitásuk az emberi hatásokkal szemben. Első megközelítésben pl. a geológiai felépítés, a globális klimakarakterek a „stabil elemek” csoportjába, a talajok, a vegetáció, a mikroklima a „labilis”, könnyen módosuló elemek közé tartozik. A városi ökológiai rendszerben az emberi tényező a meghatározó ökológiai faktor. Az ökológiai paraméterek tekintetében a városi ökológiai rendszerek nagyobb terhelés éri, mint a városkörnyék, kisebb antrópikus hatásnak kitett területek. Az egyes ökológiai tényezőkben (pl. a klimaparaméterekben, talaj fizikai és kémiai sajátosságait stb.) bekövetkező fontosabb változásokat az 8.1. táblázat mutatja be.

8.1. táblázat A városi és városkörnyéki ökorendszerek tényezőinek jellemző értékei (Adam, 1988, Sukopp, Wittig, 1993 adatainak felhasználásával)

<table>
<thead>
<tr>
<th>tényező</th>
<th>változás %-ban a vidékhez viszonyítva</th>
<th>ok</th>
</tr>
</thead>
<tbody>
<tr>
<td>globális sugárzás</td>
<td>-20</td>
<td>árnyékhatás</td>
</tr>
<tr>
<td>csapadék</td>
<td>+10</td>
<td>több szennyezés</td>
</tr>
<tr>
<td>harmat</td>
<td>-65</td>
<td></td>
</tr>
<tr>
<td>páratartalom</td>
<td>-60 -30</td>
<td></td>
</tr>
<tr>
<td>szélesebesség</td>
<td>-25</td>
<td></td>
</tr>
<tr>
<td>évi középhőmérséklet</td>
<td>+0,5 -1,0 K</td>
<td></td>
</tr>
<tr>
<td>téli minimum</td>
<td>+1 -3 K</td>
<td></td>
</tr>
<tr>
<td>aerosol</td>
<td>+1000</td>
<td></td>
</tr>
<tr>
<td>SO₂ (µg/m³)</td>
<td>+1000</td>
<td>ipar, házarttás</td>
</tr>
<tr>
<td>CO</td>
<td>+2500</td>
<td></td>
</tr>
<tr>
<td>CO₂</td>
<td>+1000</td>
<td></td>
</tr>
<tr>
<td>nehézfémek</td>
<td>+1500</td>
<td>közlekedés</td>
</tr>
<tr>
<td>zöldfelület</td>
<td>-60</td>
<td>beépítés</td>
</tr>
<tr>
<td>energiafelhasználás</td>
<td>+300</td>
<td></td>
</tr>
<tr>
<td>por (mg/m²/d)</td>
<td>+600</td>
<td>közlekedés, ipar</td>
</tr>
</tbody>
</table>
A környezeti gondok jelentős része szorosan összefügg a településfejlesztés/rendezés kérdéseivel, sok esetben településszerkezeti gondok is (pl. alacsony zöldterület-ellátottság, átszélölső híány) erősítik ezt a kapcsolatot.

8.2. ábra - A település természeti környezetre gyakorolt hatásának néhány eleme (Sukopp – Wittig 1993 után)

8.2. ábra A település természeti környezetre gyakorolt hatásának néhány eleme (Sukopp – Wittig 1993 után)

A 8.1. táblázat adatainak elemzésénél négy lényeges okot emelhetünk ki:

1. A növekvő mértékű urbanizációt és a szabad felszínek beépítését. 1960 és 1990 között Magyarországon sok 10 ezer ha korábban beépítetlen felületet építettek. Tekinthetjük ezt persze a városiasodás „természetes” velejárójaként, de érzékelni kell az okozott környezeti terhelés mértékét is. A zöldfelületek beépítése mindenek előtt a városi régió vízháztartását módosítja, de jelentősen hat a sugárzási viszonyokra, a hőmérséklet napi menetére és a szélviszonyokra.

2. Az ipari tevékenység és égetőművek emisszióját, valamint a közlekedési terhelését. A fosszilis energiahordozók előzetese, valamint a termelési folyamatok, az erőművek, a gépkocsik üzemelése a levegő minőségét rontja leginkább (pl. fotokémiai smog O₃-al). Ez az emisszió/imisszió többnyire a sűrűn lakott területeken koncentrálódik. Ezek a levegőt szennyező anyagok rontják a vegetációt és a talajvíz minőségét is.

3. A nagy leadott hőértékeket, ami speciálisan a városban ható antropogén jellegű klimaténységű. A városklima alakulását befolyásolja, és a fűtéstől, a közlekedéstől, ill. a nagy hótároló képességű épületek hőleadásából származik.

| zaj dB + 150 | közlekedés |
| szemét (t/a/lakos) + 200 | háztartás, ipar |
4. A városfejlesztési terven belüli törvényszerű égeket. Ha pl. a terv olyan építkezéseket tesz lehetővé, amelyek elzárják a város területét a légeserőt biztosító környezetétől, akkor ez a szennyezőanyagok jelentős koncentrációhoz vezethet.

A városi felszínek környezeti minőségét ezek alapján tipikusan a légszennyezés (javuló tendencia), a zajártalom (kedvezően változhat), ill. a rehabilitációt igénylő területek felhagyása/elhagyása jelentik. A 2003-2008-ra szóló Nemzeti Környezetvédelmi Program kiemelt célként elöli meg a településszerkezeti kérdéseket, a városi zöldterületek védelmét, növelését és állandóvá tételének, a közlekedés eredetű gondok mérséklését is. Az Akcióprogram 6 operatív célú tűz maga elé. A környezeti szempont települéfszerkezésben történő érvényesítését külön fejezet tárgyalja.

Az ökológiai várostervezés néhány elméleti és módszertani kérdése

A város/településfejlesztésnek új súlypontjai vannak, ami mellett egyetlen, a városökológiai terveket használó önkormányzat sem lehet el szó nélkül. Ma a természet védelmével kapcsolatos intézkedések nem állhatnak meg a város közigazgatási határánál, hanem a városperemi területeket is érintenünk kell. Ez épp annyira fontos, amennyire a település társadalmi-gazdasági hatásai kiterjednek a városkörnyékre. Jellemző példánál maradva kedvezőtlen, hogy pl. a város fejlesztési/rendezési tervében a (közigazgatási) város és a környék nem egységes rendszerként, egymást kiegészítően szerepel. Külön készül általában pl. a bel- és különből tervezett. Így rendkívül nehéz az érvényesíthető a leggyszerűbb várostervezési elvek is, pl. hogy a peremi táj elemeinek tangenciálisan és radiálisan cél szerűen be kell nyúlniuk a lakóterülethez.

Európában ma a városfejlesztés legkritikusabb pontja a városi terület-felhasználás tervezése. Ez komplex gondolkodásmódot igényel, nagyon sok szerteágazó érdek van, az optimalizálást a szakági tervek (pl. zöldterületi terv, közlekedési terv) nem képesek elvégezni, azokat célszerű összehangolni. Ezért javasolható, hogy készüljön a szakági tervek után – azok alapján – városökológiai terv, amely a város lakóit, valamint biogén tényezőit és a tervek javaslatait közti harmonizációs lehetőségeket, pl. ép a terület-felhasználási értékeléseket tartalmazza. A fejlesztési/rendezési tervek vagy a települési környezeti terv időközönként kötelező felfrissítése szintén egy lehetséges kerete lehet a városökológiai terv kimunkálásának.

Hogy csak néhány, korábban bemutatott példát említsünk, a városökológiai elemzés pl. a táj következőt funkcióit tudja a településen lakók számára felhasználhatóvá tenni:

- a zöldfelületek és erdők segítségével a városklima és a levégőhigiénia javítása,
- a természetközeli és rekreációs területekkel a kirándulás, a hétvégű turizmusformák támogatása,
- tagolt, ökológiailag sok elemből álló „város és vidéke” rendszer kialakítása, amely jelentősen támogatja azt a várostervezési célt, hogy „vizzel, erdővel, tereplésövel, a természeti és kulturális tényezőkkel együtt hatoljunk egy települést” – Sukopp, 1993.

Az ökológiai várostervezésnek sok értelmezése van (pl.: Olschowy, 1992). A politikában és a tervezésben a városökológiai terv nem mint a várossal kapcsolatos alkalmazott ökológiai, környezeti, geográfiai tudományt kezelik, hanem az ökológiai terv orientált várostervezési szándékákat. Így a terveket akkor nevezik „ökológiailag megfelelőnek”, ha azok a természeti erőforrások, ill. az ember, a flora és fauna életkörülményeit hosszútávon biztosítják, az ökológiai várostervezésnek tehát környezetbarát várostervezést kell célozni. Ezek a célok a gyakorlatban többé-kevésbé az ágazati tervekben, mint környezet- és természetvédelmi szándékok jelenhetnek meg.

Ha a várostervezést a környezet/tájtervezés logikájába illesztjük, akkor jól elkülöníthetően különböző szeletei értelmezhetőek a tervezési folyamatnak:

- elemzés, ahol a feladat az érintett település, speciális táj történelmi, múlt és jövőbeli helyzetének, a természeti, antropogén sajátosságainak folyamatainak változásainak leírása (állapotfélelelele,
- értékelés, ahol a természeti/társadalmi tényezők, objektumok összehasonlítható, sorrendbe rakott vagy kvantitálható besorolása (diagnózisa, értékbecslése, potenciálértékelése, funkciók értékelése, konfliktusok elemzése) a fő kérdés,
- állapot fenntartás (menedzsment), ahol a védelemre, kezelésre, fejlesztésre vonatkozó célok kidolgozása a feladat a tervezési területre vonatkozóan,
- intézkedési tervek szükségesek az alkalmas területhasznosítás meghatározásához (mint rámutattunk ez az egyik kulcsszerepe a várostervezésnek), ehhez intézkedési katalógus, kezelési koncepció és program illik, és világos koncepció kell a környezetvédelmi, kezelési intézkedésekről. Ezek végrehajtása és ellenőrzése is a rendszer része.

Célszerű úgy tekinteni, hogy ezen tényezők együttesen alkotják az ökológiai alapú várostervezés elemeit, azaz a tervezésnek sok segmense ismert, és sokat is használ a gyakorlat (értékelés, elemzés sok hasznos példája ismert), de egy elemzés vagy értékelés, vagy pl. funkció- és konfliktusfeltárás nélkül mégoly igényesen megpróbált városi területhasználatra kiterjedő terv nehezen tekinthető ökológiai alapú városi tervnek.

Az ökológiai várostervezés abból a szükségtelenebbel keletkezhetett, hogy egyre többen felismerték, hogy a sajátos települési környezetet, a soktényezős, szerteágazó hatáskapcsolatok nemcsak sok vizsgálattal aláírhatók, hanem integratívan, tájháztartási szinten kellene szemlélni és értékelni. Az ökológiai tervezésnek általában két kritériumot kell kielégítenie, az egyik az, hogy az egyes ágazati terveket, koncepciókat harmonizálni, integrálnia kell, pl. ökológiai szemléletük mennyire illeszkedik az átfogóbb regionális tervekhez stb. Másrészt katalizálnia kell, hogy az átfogó ökológiai kapcsolódások, összeefektírozások (gyakorlati konzekvenciájai) az egyes ágazati tervekbe visszakerüljenek, ill. ott azokat a tervezéskor figyelembe vegyék. Az ökológiai terv elsődlegesen a tervbeli kapcsolatokat hivatott rendezni. Azaz nem olyan kérdéseket kell megvizsgálni, hogy miként kerül egy szennyező anyag a városi ökorendszerbe, vagy hogyan kell kifejleszteni és bevezetni egy környezetbarát technológiát. Sokkal inkább kell vizsgálni (a regionálisan eltérő adottságok és terület-felhasználás alapján) a környezet ember általi használatát és azt úgy optimalizálni, hogy a jövőbeni fejlődés minél kevésbé ökológiai kárt okozzon, ill. csökkentse az előálló károkat. Bock et al. (1990) szerint a városközi tervezésnél a következő súlypontot kell célzni a városközi környezetvédelmi és teljesítményterhelést.:
- Mennyire alkalmaz a felszín adott hasznosításhoz, funkcióhoz?
- Milyen érzékenységű a felszín az adott hasznosítással, terheléssel szemben?
- Milyen terhelésű az adott felszín?
- Milyen konfliktusok vannak az érzékenység, terhelés és alkalmasság tekintetében?

Ha megválaszoljuk ezeket a kérdéseket, akkor elérhetünk igazán az ökológiai tervezés adott lehetőségekkel, pl. a fejlesztési vagy építési tervekben a kimutatott vagy lehetséges konfliktusokat megkísérelhetjük megszüntetni vagy feloldani. Az értékelési rendszer, a célrendszer (pl. a konfliktus/veszélyeztetés/kockázat fokozata) normatíváinak kidolgozása a városközi tervezés során következő feladata lehet.

Az ökológiai várostervezésnek Sukopp – Wittig (1993) szerint öt elvet kell kielégítenie:

b. A szükségtelen anyagfolyamatok elkerülése és az elkerülhetetlenek ciklizálása.

A város működése következtében sokanyag (ivóvíz, élelem, építési anyag stb.) kerül előre a városból a városkörnyékére és ezzel párhuzamosan oda sok káros anyag transzportálódik (pl. szennyező anyagok). Az ökológiai várostervezés fontos feladata, hogy az így előálló városkörnyéki konfliktusokat optimalizálják és feloldják. A megoldás egyik – sokrétűen elemzett – lehetőség a felhasznált anyagok (pl. csomagolóanyag) ciklizálása.

c. Minden életforma védelme. Ez a tervezési elv abból indul ki, hogy az életfeltételekhez szükséges ökológiai tényezőket kell védeni, pl. a talajt a beépítéstől, nyitva hagyni a átjárásokat pl. személyjáratokat stb.

d. A természet megőrzése és védelme. Ide számos, gyakran alkalmazott elv sorolható pl.: a különösen érdemes felszínek a környezet- és természetvédelem elsőbbsége, ill. a természeti és tájháztartási (városi) zónáknál eltérő súlypontja azt jelezte ki, hogy más a tervezés feladata a város földfelülettel szükségesen ellátott belső területein (itt pl. a klima, levegőfélházi, mint a peremi zónákban). A városban található flóra, fauna természetes körülívenek közötti fejlődik, pl. ruderális fajok behúzódnak a városban, de általában egy-egy
új biotóp kialakulása évtizedekbe, vagy évszázadokba tart. Ezt a történeti folyamatosságot a tervezésnél figyelembe kell venni.

e. A nagyobb, összefüggő szabad terek megőrzésének elve azt fejezi ki, hogy minden fajnak minimál-igényei vannak a terület nagyságával és minőségével kapcsolatban. Emellett azonban annak az elvnek is érvényt kell szerezni, hogy az élőhely eltérő geoökológiai adottságait fenntartsuk. A nivellálódás csökkentheti ugyanis a diverzitást.

- A flóra és fauna elszigeteltségét csökkentendő, a főlészerűen elkülönülő szabad terek között kapcsolatot kell biztosítani. Célszerű, ha ezeket a tereket hálózatba kapcsoljuk.

- Az ökológiai sokszínűséget minden városrészben fenn kell tartani.

- Az igazi megoldás az, ha már a tervezés szakaszában funkcionálisan összekapcsoljuk a városi ökorendszer és a felülethasznosítást, beépítést. Gondoljunk csak itt a tetők növényzetet borítják, vagy hogy egyúttal egy javaslattal is érjünk Szeged esetében: a nyílt villamospályák befűrésére (8.3. ábra).

8.3. ábra - Nyílt villamospálya befűrésére Hágában

Az ökológiai várostervezés irányzatai, a környezeti zónáció

A települések ökológiai tervezése két nagyobb logikai csoportba osztható. Az elsőbe a problémaorientált tervezés módszerei és irányzatai sorolhatók. Ez a tágabb értelemben vett tervezés első fontosabb lépéséig halad, a fő törekvések lehetőleg minden káros hatás feltárása (elemzés, értékelés). Itt még nagyon sok adatot sem használnak, inkább a koncepcionális modellek használata a jellemző. Sok feladathoz a stratégiai tervezés ezen első lépcsője eléggé ilyen logikai alapú a hazai környezetvédelmi törvény települések számára előírt környezeti terve. Egy ilyen tervezéskor azt vesszük pl. figyelembe, hogy a káros hatások jelentkezése attól függ, hogy az adott felszín, ahol a hatás jelentkezik, mennyire érzékeny (ez a biom természetességétől függ). A 8.4. ábrán Szeged példáján mutatjuk be ezt a módszert. A kérdés tehát az, hogy miképp vesszük össze a negatív környezeti hatásokat és a felszínek eltérő érzékenységét. (Itt nem precíz adatokra van szükség.) Egy megoldás pl. úgy képzelhető el, hogy lajstromozzuk a káros környezeti hatásokat (Streefkerk 1998), és aszerint, hogy kevésbé érzékeny, érzékeny vagy nagyon érzékeny felfüggesztenek ezen, hatásfokukat rendre 1, 2, 3 ponttal értékeljük (ezzel a tervezés „elemzés” szakaszába jutunk). Ezt a logikát tetszés szerinti hatásra alkalmazhatjuk (8.2.
táblázat), és így a konfrontációs területeket relatív súlyokkal láthatjuk el. Ezt a probléma orientált tervezési eredményt továbbvihetjük, s egyfajta településkörnyezeti zónációt készíthetünk el.

8.2. táblázat A káros környezeti hatások számának és a felszínérzékenység mértékének együttes értékelése

<table>
<thead>
<tr>
<th>Káros hatások száma</th>
<th>Kevésbé érzékeny felszín</th>
<th>Érzékeny felszín</th>
<th>Nagyon érzékeny felszín</th>
<th>Érzékeny Összes pont</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nincs ilyen hatás</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0 - jó</td>
</tr>
<tr>
<td>1 hatás van</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1 hatás van</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1 hatás van</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2 hatás van</td>
<td>1,1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2 hatás van</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>2 hatás van</td>
<td>2,2</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2 hatás van</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2 hatás van</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>2 hatás van</td>
<td>3,3</td>
<td>0</td>
<td>0</td>
<td>6 - kedvezőtlen</td>
</tr>
</tbody>
</table>

8.4. ábra - A térbeli funkciók és érzékenységük Szeged egy részének példáján (Miller – DeRoo 1998 után)
8.4. ábra A térbeli funkciók és érzékenységük Szeged egy részének példáján (Miller – DeRoo 1998 után) A: 1- rét-legelő, 2-erdő, 3-mezőgazdaság, 4-rekreáció, 5-lakóterület, 6-ipai terület; B: 1-többnyire talaj, vízfelszin, ültetvények, 2-többnyire emberek által használt felszin, 3-többnyire mesterséges anyagokkal borított felszin; C: 1- kevésbé érzékeny, 2-érzékeny, 3-nagyot érzékeny

A másik irányzat a célorientált tervezés. Itt a káros hatások valós problémákat okoznak, amelyek nagyobb apparátus, speciális információk (adatbázis, modell stb.) alkalmazása nélkül nem oldhatók meg. A célorientált tervezés egyik kulcskategóriája a környezethasználat kockázatának számítása. Szeged város talajainál a probléma azok nehézfém-szennyezése volt, a cél pedig annak megállapítása lehet, hogy milyen mértékben és ütemben kell beavatkozni, hogy a használati kockázat lehetőség szerint csökkentjen.

Az ökológiai várostervezés lépései

Ahogy az előzőekben bemutattuk az ökológiai várostervezésnek négy jellemző szintje ismert. Szükebb értelemben persze mind tervezés valamilyen mértékben. A települések ökológiai tervéhez jó alapul szolgálhat az abiógén (dombokozat, klima, talaj, felszín és felszin alatti vizek) és biogén tényezőkre kiterjedő ökológiai állapotfelvétel, amely a tervezés első fázisaként szolgál (elemzés). Hangsúlyozni szeretnénk azonban a más típusú tényezők fontosságát, hisz az előbb felsorolt faktorok előre vetítik a felszínhasznosítást, az építési
szerkezetet, a hulladékprodukción stb. Földrajzi alapról indulva ezek humánökológiai célú elemzését is fontosnak, a városökölógia eminens feladatának tekinthetjük.

Meghatározható azonban néhány olyan lépés, amely sok tervtípusnál szükséges. Így pl. először mindig tisztázni kell, hogy milyen körből szükséges információt gyűjteni. Kisebb léptékű munkánál minimális követelmény a várostervezési szakterületi eredmények alkalmazása, nagyobb tervezési feladatokhoz a talajtan, a hidrológia és az energiatervezés ismeretanyaga is szükséges. Figyelemmel kell lenni az adatok teljességére, naprakészségükre, általában öt évnél régebbi adat nem használható. Az alapadatok előkészítése is komoly körületkéntést igényel. Az alapinformációk ugyanis általában szelektíven állnak rendelkezésre, pl. a biotóptérképezés többnyire csak az „értékes” biotópokra szorítózkodik, vagy a nehézfém-elméletek gyakran az egészségügyi és a hidrológiai szempontú negatív hatásokat mérik, s a vegetációra gyakorolt esetlegesen kedvező hatást nem. A szakértőktől épp ezeket a pozitív és negatív hatásokat, az esetleges konfliktuspontokat kell összegyűjteni. Az egész tervezési folyamat lényege – ahogy azt bemutattuk – a cél pontos meghatározása, mely egyrészt a lehetséges prioritások mérlegelésére, másrészt a felszínhasználatban indokolt kompromisszumok keresésére épül. A tervezés fontos eleme a nyitottság, a város polgárainak informálása.

Városökológiai feladatok – pl. a város zöldterületi tervéhez kapcsolódva – már a tervezés első szakasza után is körvonulhatók. A városi terület-felhasználás elemzésekor például utaltunk rá, hogy Szegeden, bizonyos területeken nagyon sűrű a beépítés, amely ráadásul alacsony diverzitási és naturitási fokú vegetációval párosul. Ilyen felszín, pl. Belvárost kettészélő, ökológiai gátként funkcionáló zóna. Hasonló gát található a túlhasználat, ill. a katonai hasznosítás miatt leromlott állapotú É-1 ipatelep és a Fehér-tó közötti sávban is. Lényeges célnak tűnik, hogy e területek gátfunkcióit oldjuk. Fontos lehet az intenzív beépítés miatt jelenleg megszakadt Tisza menti és a tervezett autóúttal kettészelt ökológiai folyosók biztosítása. Sajnos a város környéke sem rendelkezik nagy, összefüggő, magas ökológai aktivitású területtel. Célzottan az ezek közötti kapcsolatokat erősíteni, hisz ezek lehetnek további ökológiai fejlesztések kiindulópontja. Sajátos feladat lehet az alapvetően a város porszennyezését csökkenteni hivatott, a záródó pusztai vegetációval is kapcsolatban álló erdők telepítése.

Felhasznált irodalom

9. fejezet - Az erdők szerepe az ökológiai szemléletű tájtervezésben. Esettanulmány a Szigetköz példáján (Szabó M.)

Az emberi társadalom jelentős mértékben épül a természett adatok alapján és a legkülönfélébb szolgáltatásokra, amelyeknek nélkülözhetetlen szerepük van az élet megteremtésében és fenntartásában.

Mára az emberiség kizsákmányoló tevékenységének köszönhetően az ökoszisztémák megfelelő működése forog kockán. E viszonylagos és törékeny egyensúly megbomlása beláthatatatlan következményekkel járhat. Ezért tehát fontos észrevennünk a természett adományaitól való függésünk, és nagyobb figyelmet fordítanunk a természett védelmére.

Az erdei ökoszisztémák, illetve az örökké megőrzhető szolgaltsottak fontos szerepet töltnek be minden napi életünknél. Ezek a rendkívül összetett élőhelyközösségek fontos funkciókat látnak el, amelyeknek nélkülözhetetlen szerepük van az élet megteremtésében és fenntartásában. Az emberek a természett adományaitól való függésünk, és nagyobb figyelmet fordítanunk a természett védelmére.

1. Az erdők szerepe a tájban

Egy erdő jellegét rendkívül sokfélé tényező befolyásolja és határozza meg: elsősorban az, hogy milyen éghajlati övben található, hiszen ezek az övezetek alapvetően határozzák meg az arra a térségre jellemző hőmérsékleti, csapadék- és fényviszonyokat. Emellett a talaj fizikai-kémiai tulajdonságai is meghatározó szerepet játszanak. Jelentősen meghatározó jelleg még egy erdő struktúrájában, hogy azt milyen fajok alkotják, és azokat képviselő egyedek milyen gyakorisággal fordulnak elő.

Az erdőtársulások kialakulásának fő hajtóereje az, hogy milyen éghajlati övben található, hiszen ezek az övezetek alapvetően határozzák meg az arra a térségre jellemző hőmérsékleti, csapadék- és fényviszonyokat. Emellett a talaj fizikai-kémiai tulajdonságai is meghatározó szerepet játszanak. Jelentősen meghatározó jelleg még egy erdő struktúrájában, hogy azt milyen fajok alkotják, és azokat képviselő egyedek milyen gyakorisággal fordulnak elő.

Az erdőtársulások kialakulásának fő hajtóereje az, hogy milyen éghajlati övben található, hiszen ezek az övezetek alapvetően határozzák meg az arra a térségre jellemző hőmérsékleti, csapadék- és fényviszonyokat. Emellett a talaj fizikai-kémiai tulajdonságai is meghatározó szerepet játszanak. Jelentősen meghatározó jelleg még egy erdő struktúrájában, hogy azt milyen fajok alkotják, és azokat képviselő egyedek milyen gyakorisággal fordulnak elő.
2. Az erdők természetességének és eredetiségének kérdései

A síkvidéki trópusi esőerdők és az európai mediterrán területet kivéve egyetlen földrajzi zóna/terület sem szenvedett el olyan jelentős mértékű átalakulást, mint az erdőgazdálkodás, a fakitermelés alakította alá. Az erdőgazdasági kezelés hatására mára alig maradtak fenn őserdő jellegű állományai, amelyek még őrizik az eredeti erdőségek fajösszetétele és szerkezetét. Jórészt egykorú, cserjeszintjüktől megfosztott un. kultúrerdőket találunk a legtöbb erdő helyén. Még rosszabb esetben találunk azt a helyzetet, amikor az idegenfajok jól használhatóak is a „savak eső” helyen is a savas ülepedés hatására.

A természetesség kritériumainak a teljesíten, hogy egy erdő „egészséges” működése szempontjából optimális az, ha abban az adott élőhelyre jellemző fajok az uralkodóak, mellettük kívánatos arányban elegyfajok is előfordulnak, amelyek a természetes bolygatásokhoz és a termőhelyi mozaikossághoz kötődnek. Ezzel ellentétben hiányoznak az idegenhonos vagy termőhelyidegen fajok. Lényeges a vegyes kor- és méreteloszlás, mind a fák, mind a cserjék és az újulat esetében. Kiemelten fontos az állomány koránál idősebb faegyedek jelenléte, a változatos alak, a száradó és odvás fák, és nem utolsósorban a holt faanyag megléte, illetve ennek változatossága. A faanyag meglévő és megmaradó jellemzők hosszú távon fennmaradhatnak.

A természetesség fokát az aktuális erdőkép és a potenciális erdőkép összehasonlításával állapíthatjuk meg. Az ember által ipari célra létrehozott, terjedőben lévő ültetvények pont az előbbiekkel ellentétes tulajdonságokkal rendelkeznek: legtöbbször idegenhonos fajokból, egyidős egyedekből, szabályos sorokban állnak, továbbá fontos szerepe van a biogeokémiai folyamatokban (Standovár T. et al., 2000).

A természetesség fokát az aktuális erdőkép és a potenciális erdőkép összehasonlításával állapíthatjuk meg. Az ember által ipari célra létrehozott, terjedőben lévő ültetvények pont az előbbiekkel ellentétes tulajdonságokkal rendelkeznek: legtöbbször idegenhonos fajokból, egyidős egyedekből, szabályos sorokban állnak, továbbá fontos szerepe van a biogeokémiai folyamatokban (Standovár T. et al., 2000).

A szintezettség a madárvilág kialakulásában jelentős. Az idős, odvás faegyedek pedig búvó- és szaporodási helyet biztosítanak az erdő állatvilágának. A holt faanyagokhoz szintén egész életközösségek kapcsolódnak, továbbá fontos szerepe van a biogeokémiai folyamatokban (Standovár T. et al., 2000).

A természetesség fokát az aktuális erdőkép és a potenciális erdőkép összehasonlításával állapíthatjuk meg. Az ember által ipari célra létrehozott, terjedőben lévő ültetvények pont az előbbiekkel ellentétes tulajdonságokkal rendelkeznek: legtöbbször idegenhonos fajokból, egyidős egyedekből, szabályos sorokban állnak, továbbá fontos szerepe van a biogeokémiai folyamatokban (Standovár T. et al., 2000).

A szintezettség a madárvilág kialakulásában jelentős. Az idős, odvás faegyedek pedig búvó- és szaporodási helyet biztosítanak az erdő állatvilágának. A holt faanyagokhoz szintén egész életközösségek kapcsolódnak, továbbá fontos szerepe van a biogeokémiai folyamatokban (Standovár T. et al., 2000).

Az erdők szerepe az ökológiai szemléletű tájtervezésben. Esettanulmány a Szigetköz példáján (Szabó M.)

A szintezettség a madárvilág kialakulásában jelentős. Az idős, odvás faegyedek pedig búvó- és szaporodási helyet biztosítanak az erdő állatvilágának. A holt faanyagokhoz szintén egész életközösségek kapcsolódnak, továbbá fontos szerepe van a biogeokémiai folyamatokban (Standovár T. et al., 2000).

Az erdők szerepe az ökológiai szemléletű tájtervezésben. Esettanulmány a Szigetköz példáján (Szabó M.)
Az erdők szerepe az ökológiai szemléletű tájtervezésben.

Esettanulmány a Szigetköz példáján (Szabó M.)

A természetesség értelmezése nem lehet statikus, mivel egy adott termőhelyen a regenerációs és szucessziós ciklusok fázisai miatt többféle erdő is kialakulhat. Ezen túlmenően a természetesség nemcsak az eredeti, hanem az antropogén beavatkozás következtében megváltoztatott élőhelyeken is értelmezhető, ha az erdő a jelenlegi termőhelyi potenciálának megfelelő ös homo fajkészlettel, szerkezettel és folyamatokkal rendelkezik.

A természetesség mértékének megállapítása során a jelenlegi erdő állapotát hasonlítjuk a termőhelyi adottságoknak megfelelő potenciális erdőhöz, s a különbség adja az emberi beavatkozás mértékét. Hazánkban, a Duna-Tisza közé eső részein, ahol a talajvíz szintje jelentős mértékben és tartósan lecsökkent az eredeti homoki tölgyesek (pusztai- és gyöngyvirágos tölgyes) már nem alakulhatnak ki, helyettük a nyáras-borókások vagy fagyalos-nyárasok azok az erdők, amelyek spontán módon jöttek létre. Az emberi beavatkozás hatása nem minden esetben jár erdőtársulás-váltással egy adott élőhelyen. Jó példa erre a magasártéri keményfás ligeterdők átalakulása a folyószabályozások és vízrendezések eredményeként. Itt a eredeti vízigényes fajok háttérbe szorultak a szárazságot jobban elviselő fajok száma és mennyisége aránya nőtt meg az erdőállományokban, így ez az erdő vált természetessé. Lényeges még megemlíteni, hogy természetességről különböző léptékben beszélhetünk: állomány, táj és régió szinteken lehet és szükséges vizsgálni.

Az eredetiség bármiféle emberi beavatkozás nélküli természetesség. Közismert, hogy az antropogén hatásokra szinte a világ minden részében jelentős mértékben megváltozott az ökológiai környezet (árterek ármentesítése, talajvízszint süllyedés, tápanyag feldúsulás, levegőszennyezés, kemikália-terhelés, hőmérsékleti és csapadék anomáliák stb.), módosultak a termőhelyek, az eredeti erdőket alkotó fajok némelyikének (vagy többször) a kipusztulásával megváltozott az erdők és a kompetíciós viszonyok is. Mindezek következtében napjainkban eredeti erdőségekről és erdős-tájokról nem is beszélhetünk. A ma „őserdőknek” nevezett erdőállományok eredetisége is erősen megkérdőjelezett. A természetközeli állományok egyes elemei lehetnek eredetiek, ilyenek pl. a magyarországi erdőrezsztumok (9.2. és 9.3. ábra) ellenére is lehetőség van az elválasztásra.

A természetesség kérdése általában a növénytakaróval kapcsolatban merül fel. Egy adott vegetációtípus az egymást követő klimaváltozások egyedi sorrendjének következtében alakul ki. Például az USA-beli Minnesota államban az első telepek harcs-juharszil erdőkkel találkoztak, így napjainkban ezek megmaradt állományait tekintik védendőnek. A pollevizsgálatok azonban kiderítették, hogy 300 éve még príori lehetett ugyanazon a helyen, tölgyes foltokkal. A száraz éghajlat miatt a gyakori erdőtüzek következtében a harcs-juhar-szil erdők a védettebb, nedvesebb helyekre szorultak. A 17. századi hűvösebb klimában (kis jégkorszak) innen terjedtek el és
Az erdők szerepe az ökológiai
szemléletű tájtervezésben.
Eszttenulmány a Szigetköz példáján
(Szabó M.)

hódítottak meg egyre nagyobb területeket, és a jelenlegi melegebb klimában is megmaradtak. Nem egyértelmű
tehát, hogy melyik növénytakarót tekintsük természetesnek (Sprugel D.G. 1991).

9.2. ábra - Magyarország erdőségei és az erdőrezervátumok

(Forrás: Bartha D. – Esztó P. 2001)

Bár az élőhelyek pusztulása főként a fajokban gazdag trópusi esőerdőkben érezhető hatását, a következményeket
bolygónk más részein is tapasztalhatjuk, elsősorban ott, ahol az erdőket gyors ütemben kivágják. A nagymértékű
élőhelypusztítás igen gyakran fragmentációval jár az élőhely kisebb darabjainak szétszóró történése során. A
Az erdők szerepe az ökológiai szemléletű tájtervezésben. Esettanulmány a Szigetköz példáján (Szabó M.)

9.3. ábra: Két hazai erdőrezervátum

A természetes erdőállományokról feltételezve, hogy emberi hatásoktól mentesen, a természetes erdődinamikai folyamatok során alakul ki. Struktúráját és funkcióját a természetes diszturbációs folyamatok és az állományalkotó fajok életment stratégiái határozzák meg. A hazai erdők természetességét 11 kritérium alapján határozták meg, melyeket a 9.4. ábra foglal össze.

A 9.5. táblázatban az Országos Erdőállomány Adattár segítségével azonosítható erdőtársuláscsoportok területi megoszlása látható. Ebből jól kitűnik, hogy az ország jelenlegi területének csupán mindössze 7,1%-a tekinthető természközének. Ennek megoszlását tekintve megállapítható, hogy ennek a hét százaléknak a 32%-a gyertyános-tölgyes, 25%-a cseres-tölgyes és 21%-a bükkös állomány. Az összes többi jóval kisebb arányban részesedik az országos területarányból. A gyertyános-tölgyesek viszonylag jelentős aránya részben annak tulajdonítható, hogy egy jól átgondolt erdészeti kezelés pl Vas megyében jelentős kiterjedésű fás legelőket és írtásföldeket alakított át a gyertyános-tölgyesekké a XIX. század végére.

9.5 táblázat: Természetközeli erdőtársulás-csoportok területe Magyarországon (Forrás: Állami Erdészeti Szolgálat Adattár, 2000)

9.5. ábra - Erdőtársulás-csoportok területe Magyarországon

<table>
<thead>
<tr>
<th>Erdőtársulás-csoport</th>
<th>Terület (ezer ha)</th>
<th>Arány (%)</th>
<th>Terület (az összes erdőterület %-ában)</th>
<th>Terület (az ország területének %-ában)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bükkésők</td>
<td>140.0</td>
<td>21.0</td>
<td>7.89</td>
<td>1.50</td>
</tr>
<tr>
<td>Gyertyános-tölgyesek</td>
<td>210.0</td>
<td>32.0</td>
<td>11.85</td>
<td>2.26</td>
</tr>
<tr>
<td>Cseres-tölgyesek</td>
<td>168.5</td>
<td>25.0</td>
<td>9.39</td>
<td>1.79</td>
</tr>
<tr>
<td>Tömelékeltő- és szurdokerdők</td>
<td>0.5</td>
<td>0.0</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Molyhostölgyesek</td>
<td>38.0</td>
<td>6.0</td>
<td>2.15</td>
<td>0.41</td>
</tr>
<tr>
<td>Homoki tölgyesek</td>
<td>9.5</td>
<td>1.5</td>
<td>0.54</td>
<td>0.10</td>
</tr>
<tr>
<td>Borókás-nýrások</td>
<td>1.0</td>
<td>0.0</td>
<td>0.04</td>
<td>0.01</td>
</tr>
<tr>
<td>Fenyőegetős lombos erdők</td>
<td>16.0</td>
<td>2.5</td>
<td>0.39</td>
<td>0.17</td>
</tr>
<tr>
<td>Éger- és kőrisletek</td>
<td>37.0</td>
<td>5.5</td>
<td>2.08</td>
<td>0.40</td>
</tr>
<tr>
<td>Fűz-nyár-értéri erdők</td>
<td>13.0</td>
<td>2.0</td>
<td>0.73</td>
<td>0.14</td>
</tr>
<tr>
<td>Keményfás-értéri erdők</td>
<td>19.0</td>
<td>3.0</td>
<td>1.07</td>
<td>0.20</td>
</tr>
<tr>
<td>Láperdők</td>
<td>3.0</td>
<td>0.5</td>
<td>0.19</td>
<td>0.04</td>
</tr>
<tr>
<td>Egyéb természeteserű erdők</td>
<td>4.5</td>
<td>1.0</td>
<td>0.24</td>
<td>0.05</td>
</tr>
<tr>
<td>Természeteserű erdők összesen</td>
<td>658.0</td>
<td>100.0</td>
<td>37.09</td>
<td>7.10</td>
</tr>
</tbody>
</table>

Az idegenhonos fajú erdők átlagos természetességi értékei (9.6. ábra) a 9.1. ábrához hasonló eloszlást mutat. A legmagasabb értékszámot itt a Dunántúli-középhegység erdei kapták (44,3%), majd ezt követi valamivel kevesebb értékkel az Északi-középhegység, a Nyugat-Dunántúl és a Dél-Dunántúl erdőségei. A leginkább alacsony természetességi átlagértékeket az alföldi területek erdői kapták, bár ít is különbösségek vannak a lőszvidék, az ártér- és lápvidék, a szikes területek és a homokvidékek között.
Az erdők szerepe az ökológiai
szemléletű tájtervezésben.

Esettanulmány a Szigetköz példáján
(Szabó M.)

9.6. ábra - Az idegenhonos fafajú erdők természetessége erdészeti nagytájanként

9.6. ábra: Az idegenhonos fafajú erdők természetessége erdészeti nagytájanként. A színek folytonos skálán %-ban jelzik a természetességi állapotot (100% = természetes, 0% = teljesen művi). A számok az erdészeti nagytájakat jelölik. (forrás: Bartha D. – Gálhidy, L. 2007)

3. Az erdők használata és rendeltetése

Az erdőségek gazdasági célú használata a Kárpát-medencében egészen a neolitikumig (Kr.e. 5500-3400) nyúlik vissza. Az erdők mind a mai napig jelentőséen meghatározták az itt élő népek táj- és természeti erőforrás használatát, a megtelepülést és a gazdaság térszerveződését (Frisnyák S. 2012).

Az erdőgazdálkodás hosszú távú célját napjainkban az elsődleges rendeltetés adja meg, amelyet erdőrészletként kell meghatározni. Az elsődleges rendeltetés mellett további rendeltetések határozhatók meg, melyeket az erdőgazdálkodási tevékenység során az elsődleges rendeltetés mellett figyelembe kell venni. A hazai erdőterületek megoszlását elsődleges rendeltetés szerint a 9.7. ábra mutatja be.

9.7. ábra - Erdőterületek megoszlása elsődleges rendeltetés szerint
Az erdők szerepe az ökológiai szemléletű tájtervezésben.

Esettanulmány a Szigetköz példáján

(Szabó M.)

128

9.7. ábra: Erdőterületek megoszlása elsődleges rendeltetés szerint (Forrás: Állami Eörszeti Szolgálat Adattár, 2000)

4. A biológiai sokféleség szerepe

Hosszú évtizedek óta folyamatosan és egyre szélesebb körben foglalkoztatja a kutatókat a kérdés, hogy mi a biodiverzitás szerepe egy ökoszisztéma, különösen az erdők működésében, funkcióiban (pl. produkcióiban, szennérlegében, a rendszer stabilitásában). A probléma gyakorlati vonatkozása igen jelentős: mekkora sokféleség megőrzése szükséges az ökológiai rendszerek működésének fenntartásához és ezáltal az emberiség számára nyújtott ökoszisztéma szolgáltatások biztosításához?

Mára csaknem bizonyítottá vált, hogy a biodiverzitás minden aspektusa (pl. az egyedek sokfélesége, az ő életműködéseikhez szükséges információkat hordozó gének sokfélesége, a fajok változatossága, illetve az élőlényközösségek szintjén az egyes társulások belső struktúrájának sokfélesége egyaránt, de ebbé a fogalomkörbe tartozik) jelentős befolyással bír az ökoszisztémák produktivitására, rugalmasságára és ellenállóképességére. A kapcsolatot már Darwin is megállapította 1872-ben, majd alá is támasztotta egy egyszerű kísérlettel. Két, ugyanolyan méretű és ugyanolyan tulajdonságokkal rendelkező földterületet ültetett be növényekkel. Az egyik területre csak egyetlen féle füvet ültetett, míg a másikra több faj példányai is kerültek. Tapasztalatai egyértelmű voltak: az utóbbi táblán bizonyos idő elteltével nagyobb egyedszámban talált növényeket, és nagyobb mennyiségben elszáradt fűnövényzetet, mint az első parcellán. A „kísérleti ökoszisztémák” közül a második, a fajgazdagabb (nagyobb diverzitású) produktivitása és biomasszája nőtt meg jelentős mértékben, míg az elsőé gyakorlatilag nem változott.

A kutatók tapasztalatai szerint ugyanis a biológiai sokféleség és az ökoszisztémákban zajló folyamatok nagyban is összefüggengen. Ma Darwin tapasztalatait azzal magyarázzák, hogy a biodiverzitás hatása az ökoszisztéma funkcionálisára főként a fajok közötti különbözőségekből és az ő kölcsönhatásai kiből ered. A fajgazdaság az esztétikai élmény mellett azért is fontos, mivel több faj lévén több fajok közötti (interspecifikus) kapcsolat jöhet létre, így az anyagforgalom és energia áramlására több alternatív út áll rendelkezésre. Ha minél több, különböző faj él együtt mellett, többnyire egymást kiegészítő erőforrás használatával élnék, ami által egy változatosabb közösség alakul ki. A fajgazdaság további jelentősége, hogy növeli annak az eséllyét, hogy adott közösségként jelen vannak olyan fajok, amelyek képesek megbirkózni a különböző környezeti állapotokkal. Ugyanis ha egy faj áldozatul esik valamilyen betegségnek vagy károsításnak, akkor más fajokra lehet szükség a „pótlásra”, hogy az ökoszisztéma folyamatokban ne történjen változás. Ez csak hasonló igényű fajok esetén valósulhat meg. Ha a különböző környezeti feltételekhez könyvünk alkalmazkodó fajból több van az ökoszisztémában, az nagyobb „ellenálló-képességet” jelent.

A következő, erdőkre vonatkozó példában is jól látható, milyen jelentős hatással lehet akár egy-egy faj is adott ökológiai rendszerekben. Boreális erdőkben, a tagjában a különféle mohafajok jelenléte a mikroklimára is kihat:
a mohafajok ugyanis csökkentik a hőáramot, így a talaj hőmérséklete kisebb mértékben ingadozik, ami a tápanyagellátásra és produktivitásra nagy befolyással van. A mohafajok ily módon kulturálisnak ezeknek a rendszereken, ha eltűnneke a tagjaibólől, kaszkádszerűen összeomlana a rendszer. A kulcsfajoságú fajok bármilyen ökológiai funkciót betöltetnek, lehetnek például növények, ragadozók, növényevők, szákmányaallattok, akár paraiziták is. A kulcsfajok jelentős mértékben befolyásolják az élőlényközösség fajdiverzitását, fajosztételeit és a szolgáltatások elérhetőségét, minőségét, hiszen rendkívüli módon veszik ki a részüket az élőlényközösségek folyamataiból az energia- és anyagáramlás közvetlen megváltoztatásával, vagy az ezek mértékét befolyásoló folyamatokra való közvetített hatásukkal.

A biodiverzitás tehát alapvető fontosságú az ökoszisztémák funkciójában, és így az ökoszisztémák szolgáltatásaainak fenntartása szempontjából. A különféle élőlényközösségeket alkotó fajok évmilliók során „csiszolódtak” így össze, nem egymással, hanem életetlen környezetükkel is, amelyek eredménye a ma tapasztalható nagymértékű komplexitás. Ismeretek megképtelenítő hiányosak e rendszereket illetően, ezért nem tudhatjuk, hogy emberi tevékenységünk milyen következményekkel jár majd, milyen mértékben veszélyezteti rajtuk keresztül a geológiai rendszerek termeszetes állapotát, és ezen keresztül a minket is ellátó szolgáltatásaikat.

5. Magyarország természetközeli erdőségei

Az ember tájátlakító tevékenységét megelőzően a Kárpát-medencét az erdők uralták, még Magyarország területének is közel 85%-át erdő borította. A pannon régió földrajzi helyzetéből adódik, hogy legnagyobb része az erdősztyepp-klimába esik, és a főként kőriszínű lombkeresztül végzett átmeneti határokon húzódik. A hazai potenciális erdősültségéből mára 21% maradt, de ennek mindössze 30%-a a vagy mintegy 32%-a őshonosabb természetközi fajok alkotják. Cserje medencében is, ezen keresztül a minket is ellátó szolgáltatásaikat.

A bükkösök a hazai középhegységek magasabb régióiban, a kistettség függően 700 - 1000 m magasságban jelennek meg hűvös, nedves kiegyenlített klímában. A magasabb régióban a bükkösök átmeneti fajai (Fagus sylvatica). Szilárdságuk az egész természetközi fajok személyesében. Az erdők és természetközeli fajok a hazai természetközeli életre szolgáló híres fajak.

A gyertyános-tölgyesek főként dombvidékeken és a hegyvidékeken alakulnak ki. Fő erdőalkotó faj a gyertyán (Carpinus betulus) és a kocsánytalan tölgy (Quercus petraea). Ez az erdőtípus a bükkösökét az egész kis területen előforduló természetközi főbb hazai erdőtípusokat tekintjük át röviden.

A tölgyesek legelterjedtebb típusa a cseres-tölgyes, kiterjedt klimazonális állományai domb- és hegyvidékeken 250-450 m magasságban alakulnak ki. Zárt erdők, ahol lombkoronaszintet maga a kocsánytalan tölgy (Quercus petraea) uralkodik, egyfajta cserettölgy (Quercus cerris), a rekonstrukció (Populus tremula), a mezői juhar (Acer campestre) és a szilárdságú (Ulmus-fajok). Cserettes erdők a fenyőkönkénti és a szilárd erdőtípusok. A tölgyeseknek változatos és sokféle felületen alakul ki a Kárpát-medencében is, elsősorban a fenyőfajok, a lombkoronaszintet kizárólag a rossz növekedésű kocsánytalan tölgy (Quercus petraea) alkotja. Cserje- és lágyszárú szintjük fajszegény.
Mészkedvelő erdők – többnyire rossz növekedésű, melyhös tölgy (Quercus pubescens) uralta erdők, gyakran erősen fejlett cserje- és gyepszinttel. Elegyafaként gyakori a cser, az olaszölgy (Quercus virgiliana) és a virágos kóris (Fraxinus ornus), illetve a Dunántúlon a cserszömörce (Cotinus coggyria).

Erdőssztyepp-erdők – három csoportja különböztethető meg. Egyik a tatárjuharszö lősöztölgyes, amely az Alföld széles lőszhátain és a középhegységek lábaián lősztakaróján alakult ki. Lombkoronájában uralkodó a molyhos-és a csertölgy (Quercus pubescens, Q. cerris), társul hozzájuk a kocsántyalan- (Quercus petraea) és a kocsányos tölgy (Quercus robur) is. Gyepszintjében a kontinensális tölgyesek több faja is megjelenik.

A mérsékeltűi lombkoronáda – ahová a fenti magyarországi erdők is tartoznak – alacsonyabb régióit, elsősorban a dombvidékeket és az alacsonyabb hegyvidékeket világásszerte már évszázadok óta mezőgazdasági területként hasznosítják. A magasabb térszének kiterjedt gyümölcspállosok és szőlők foglalják el több helyen az egykori erdők területét, elsősorban alamaféle és a csonthajások termesztése a jellemző. Az alacsonyabb térszínekben a gabonafélék termesztése mellett a kukorica, burgonya, dohány, komló és a jellemző hasznosnövények.

Fenyvesek – a hegységek bizonyos magasságaitól (1000-1800 m) a lombferdeket a fenyesvek váltják. Magyarországon az elegyen alacsony fenyvesek kevés, nem fordulnak elő, csak újrafel épült vagy telepített állományaikkal találkozhatunk a Magyar-Középhegység magasabb részein, elsősorban a Zempléni-hegységben, a Bükkben, a Mátrában és a Bakonyban. Tölgyegyenes erdei fenyvesek természettőlősi állapotokban a Nyugat-Dunántúlon az Ószögeiben, elegyenes lucedos lószhátainak a Kőszegi-hegységben és Sopron környékén díszelnek. A Bakonyban, Szentgál környékén található Közép-Európa legnagyobb tiszafa állománya (Taxus baccata) egy Bükk második lombkoronaszintjét alkotva.

A síkvidéki erdők közül a lőszöltölgyesszel rokon erdők a sziki tölgyesek, melyek magas talajvízszintjének és jelentős vízszintingadozásnak kitett erdői. Napjainkra mindössze kicsi, föltüzetészi állományai maradtak fenn a Tiszántúlon (pl. Újszentmargita, Öhát). Uralkodó bennük a kocsányos tölgy (Quercus robur), gyepszintje ez gazdag hagymás-gumós kora korától virágzó fajokban.

A homoki tölgyesek két típusa ismert hazánkban: a gyöngyvirágos- és az egyszőnyegű fenyvesek. Az előbbi állományai az alföldi homokterületek alacsonyabb területein (nagynemű hatalmas mélyedéseken, az elhagyott egykori Duna-medrek helyén, a talajvíz befolyása hatására alakultak ki. A pusztai tölgyesek a homokbuckákok magasabb részei növegnének, talajvízhatás nélkül. A kocsányos tölgy (Quercus robur) itt is uralkodó, de jelentős szerepet jutott az Alföld. Napjainkra mindössze egy kicsi állomány maradt fenn, a Tiszántúlon (pl. Újszentmargita, Öhát). Uralkodó bennük a kocsányos tölgy (Quercus robur), gyepszintje gazdag hagymás-gumós kora korától virágzó fajokban.

Ligeterdők – az Alföld nagyobb folyói mentén alakultak ki, többé-kevésbé a víz hatása alatt állnak. A fűz-nyár ligete a széles lőszhátain élve, évente átlagosan 2-4 hónapig kerülhetnek víz alá. Uralkodó fajuk a fehér és a törékeny fűz (Saliis alba, S. fragilis), a fekete nyár (Populus alba, P. nigra). Termőhelyüket a cserbe szegény, elővárás nemesített nyár- és fűzfűttetvények foglalják el, bennük gyakran tömegesek a tájládekon invazív fajok mint a gyalogakác (Amorpha fruticosa), amerikai kóris (Fraxinus pennsylvanica) és a zöldjuhar (Acer negundo). A keményfa ligeterdők, más néven tölgy-kóris-szil ligeterdők a magas ártérre jellemzőek. Magasra nővő, jól szintezett nagy fajdiversitású szálerdők, jellemző fái a kocsányos tölgy, a vénisz (Ulmus laevis), a Kárpát-medence bennszülött alfafa magyar kóris (Fraxinus angustifolia ssp. pannonica) és a hegyvidéki erdőkrel jellemző magas kóris (Fraxinus excelsior). Cserje- és lágyzsárrú szintje dús és fajgazdag, számos hegyvidéki faj fordul elő. Ligeterdők borítottak egy koronának másolatát övi nagyobb folyói árterei. A folyószabályozásokat követően állományaik nagy része a mentett oldalra került, legtöbbjüket kiváltották és szántóként vagy kaszálóként hasznosítják.

Láperdők – állományai a lecsapolások és vízrendezések következtében csak töredékében maradtak fenn. Az égeres láperdő lombkoronáját főleg mérgész éger (Alnus glutinosa) alkotja, szálánként előfordul benne a magyar kóris és a vénisz szil. A fűz- és nyírlapok alatt tőzeg képződik, és számos hidegkori maradványfajt öriznek.

Fás legelők – extenzív legelőként kialakított gyepesek, ahol a ritkásan álló fák erős tájképi meghatározóak. Többnyire egykori természetes állományok helyén élnek, így fái hagymások. Általában nagy folyóinék egykori árterei, ritkábban domb- és hegyvidékeken alakultak ki, s az ősi magyar ártéri gazdálkodás emlékei. Nyílt területei védett ragadozó madarak (kék- és vörösvérce, kerecsen) fontos táplálkozó területi.

Összefoglalóan elmondható, hogy az erdők területe legnagyobb mértékben az erdőssztyepp-erdők esetében csökkent. Eredetileg az ország 23%-át borították, ma csak elsőről maradványainál találkozhatunk az alföldi és
Az erdők szerepe az ökológiai szemléletű tájtervezésben.

Esettanulmány a Szigetköz példáján

(Szabó M.)

Az erdők szerepe az ökológiai szemléletű tájtervezésben. Az erdőssztyepp-erdők többnyire kiváló minőségű talajokon alakultak ki, helyüket régóta mezőgazdasági területként hasznosítják.

Hasonló mértékben csökkent a láp- és ligeterdők területe is, a folyószabályozások és lecsapolások következtében. A középhegységi erdők közül a cseres-tölgyesek területvesztése a legnagyobb, 90% feletti. Termőhelyüket szintén a mezőgazdaság foglalta el (9.7. tábla).

9.8. ábra - Erdőtípusok területi részesedése Magyarországon

6. Esettanulmány: tájváltozások a Szigetközben

Számos nemzetközi kutatási program indult be az elmúlt évtizedben a biológiai és a táji változatosság kutatására és megőrzésére, a tájókológiai kutatások eredményein nyugvó tájhasználat, tájvédelem és tájtervezés alapelveinek kidolgozására (Csorba P., 2002). Ezek egyike a Szigetköz erdőinek területváltozásai, természetvédelmi szempontból figyelemre méltó területeinek, természetességi állapotának kutatása.

Érsek Imre (1924) szerint a szigeteket a hatalmas tölgyerdők borították, amelynek utolsó maradványai a 19. század nyolcvanas éveiben kerültek meg. A tölgyek azonban nem alkottak összefüggő erdőségeket, hanem többnyire csak a magasabb társvizeket borították. Az akadályozó fekvésű területeken bokorfüzesek, fűz-nyár ligeterdők és zátonynövényzet uralkodott. A tölgyerdők kiterjedésére tekintve megoszlanak a valószínűségek; pl. Kogutowicz Károly (1930) munkájában: „A Dunántúl ósi növényes takarója” címmel készített térképén jó látható, hogy a Mosoni-Duna és az Óreg-Duna között és mentén átért volt, a táj jellegét a vízi világ határozta meg. Az erdőségek a hullámterületen fejlődtek ki és nem kisértek folyamatosan a meder oldalát. A szigetközi táj vízjáratát a mai légifelvételek is igazolják: az ike menti feltöltődési rajzolatok, a tekervényes meandernymok egyértelműen a korábbi árteri jelleget mutatják.

6.1. Az erdőgazdálkodás hatása

Az I. katoni térkép tanúsága szerint a 18. század végére a természetes erdőknek csepur néhány százaléka maradt meg. A társadalomnak mindig szüksége volt fára. Az erdőhasználat gyakorlatilag egyidejű az emberi
társadalmak kialakulásával, illetve a letelepedéssel. A sokszor mértékelt fáktermelés a természetes erdők területét oly mértékben lecsökkentette, hogy a 19. század végére a maradék már nem tudta volna kielégíteni az egyre növekvő faszúszáséget, ezért a szikai területek, így a Szigetköz erdőterületet is jelentősen növelték. A telepítéseket általában gyorsan növő, ezért nagyobb gazdasági hasznot hozó nemesített vagy tájidegen fajokkal végzették. Emellett az eredeti erdők egy részét is ilyen fajokkal újjították fel (Fekete G. et al., 1981). Az ártérek természetes erdőállományai – elsősorban a keménysági-erdők – így nemesak a mezőgazdasági tevékenységnél és a folyószabályozásoknak estek áldozatul, hanem az erdőgazdálkodás is tovább csökkentette ősi állományait. A Duna szabályozását követően a hullámtáról szinte teljesen kiszorultak a keménysági-erdők, a magasabb térszínű fennmaradt töredék állományai ritkaságnak számítanak.

A második világháború után tovább csökkent az erdők területe. Az Országos Erdészeti Főigazgatóság erdőfelüjítási monografiájának (Danszky, 1963) Szigetközsel foglalkozó kötetében levő adatok a terület alig több, mint 14%-át borította erdő. A változások azonban nincsenek az erdőterületek csökkenésében mutatkoztak meg, hanem az erdők természességüei állapotában is. Az 1920-as években az erdő és rétegű szárazalakos aránya még 60% : 40% volt. Ezen a 60% erdőn belül az ún. „kultúrrunas” aránya mindössze 12,5 %-ot tett ki. Az 1980-as évekre az Erdészeti Tudományos Intézet (ERTI) adatai szerint ez az arány megfordult. 20%-ra csökkent az erdőterület. A megmaradt erdőállományok összetételeiben is jelentős változás tapasztalható: 81%-ra ugrott a „kultúrrunas” aránya a természetközi erdők rovására. Az FM Erdőrendezési Szolgálat 2004. évi adatai szerint Szigetközben 8400 hektáron folyik erdőgazdálkodás. Ebből 3800 a hullámtéren, 4600 pedig a mentett oldalon található. Az erdők zöme a Nagy-Duna és a Mosoni-Duna mentén húzódik. Erdészeti szempontból az erdők két nagy csoportját is különböztetik meg, amelyek az alábbiak:

1. Hullámtéri erdőállományok: ahol az árnyilombos fajok a meghatározóak, elsősorban a nemesnyár és a nemesfűz. Állományuk azért növekedett, mert a rövid vágásforduló miatt itt a leggyorsabb a ráfordítás: 81%. Az erdőn belül az 1920-as években az ősi állományok kizárólag gazdasági célokra szolgáltak, ahol az erdő felújítását teljesen felfüggesztették. A hullámtéri erdők természetes állományai itt a legkevésbé változtatottak, az „kultúrrunas” aránya még 60% volt.

A mentett oldalon az akác jelentős területet foglal el a potenciális keménysági-erdők, fontos szerepet töltnek be a magyar erdőgazdálkodásban, elsősorban az éves fanövekmény szempontjából.

A nemesnyár állományok kizárólag gazdasági célú erdők, fontos szerepet töltnek be a magyar erdőgazdálkodásban, elsősorban az éves fanövekmény szempontjából.

A mentett oldali erdők főként gazdasági célból hasznosítottak, és támogatták a rendszerváltási társadalmak kialakulását, így természetvédelmi szempontból. A mentett oldali erdők főként gazdasági célból hasznosítottak, és támogatták a rendszerváltási társadalmak kialakulását.

A mentett oldalon az akác jelentős területet foglal el a potenciális keménysági-erdők, fontos szerepet töltnek be a magyar erdőgazdálkodásban, elsősorban az éves fanövekmény szempontjából. A mentett oldali erdők főként gazdasági célból hasznosítottak, és támogatták a rendszerváltási társadalmak kialakulását. A nemesnyár állományok kizárólag gazdasági célú erdők, fontos szerepet töltnek be a magyar erdőgazdálkodásban, elsősorban az éves fanövekmény szempontjából.

A mentett oldali erdők főként gazdasági célból hasznosítottak, és támogatták a rendszerváltási társadalmak kialakulását. A nemesnyár állományok kizárólag gazdasági célú erdők, fontos szerepet töltnek be a magyar erdőgazdálkodásban, elsősorban az éves fanövekmény szempontjából.
Az erdők szerepe az ökológiai
szemléletű tájtervezésben.
Esettanulmány a Szigetköz példáján
(Szabó M.)

A Szigetközben ősi állapotú erdők legnagyobb részben az alacsonyártéren maradtak fenn, s előfordulásuk súlypontja az Őreg-Duna hullámterére, egyben a Tájvédelmi Körzet területére esik. Kevesebb állomány képviseli a magasártéri keményfaligeteket, amelyek főként a Mosoni-Duna mentén fordulnak elő, szintén a Tájvédelmi Körzet területén.

6.2. A tájszerkezet változásai a Lipót-Ásványi ágrendszerben

9.9. ábra - Az Öntési-tó nyílt vize, nádas és puhaliget erdő komplexe

A Duna elterelését követően a tó víz nélkül maradt több mint egy évig. Később vízkormányzással biztosították az állandó vízborsátást úgy, hogy felülről vizet vezetnek a tóba, a vízfelesleg pedig visszaömlődik az „Árvai Dunaág”-ba. E beavatkozás azonban hosszú távon nem jó, ugyanis az állóvíz helyett erősen mozogó víz van jelen, ami előbb-utóbb megváltoztatja a tó ökológiai jellegét. Az Öntési-tó ökológiai állapotának megőrzése érdekében szükséges volna a „mesterséges árvizek” szimulálását, vagyis az elárasztások és időnkénti kiszáradások biztosítását.

A tavat hiába keressük a régi történelmi térképeken, nyomát sem találjuk még a harmadik katonai felmérés térképlapjain sem (v. 9.10. – 9.14. ábrák). Ennek két oka lehetséges: az egyik szerint azért nem ábrázolták, mert a korabeli térképek nem tudták alaposan bejárnii az ingoványos, mocsaras, náddal sűrűn benőtt folyóágak közti szigetrészeket, így mindhárom katonai térképen erdőt ábrázoltak a jelenlegi helyén. A másik oka, hogy valóban nem volt állandó vízborsátás az Öntés-szigetnél ezen a helyén, de a szabályozás és vízrendezések után a területnek ezen a laposabb részén állandósult a vízborsátás, ami az Öntési-tó kialakulásához vezetett. Ez utóbbi változatot a helybéliek is igazolják, akik szerint a tó bármennyire is értékes, táji és természetvédelmi szempontból nem természetes kialakulású.
Az erdők szerepe az ökológiai
szemléletű tájtervezésben.
Esettanulmány a Szigetköz példáján
(Szabó M.)

A feldolgozás során a Monarchia első katonai felmérésének idejéig nyúltunk vissza, amikor az I. katonai térképlapok készültek. A változások a II.-. III. katonai térképen keresztül az 1970-es években készült topográfiai térképen keresztül követhetők nyomon.

9.10. ábra - Első katonai felmérés térképlapja

9.10. ábra: Első katonai felmérés térképlapja

9.11. ábra - Második katonai felmérés térképlapja

9.11. ábra: Második katonai felmérés térképlapja
Az erdők szerepe az ökológiai szemléletű tájtervezésben. Esettanulmány a Szigetköz példáján (Szabó M.)

9.12. ábra - Harmadik felmérés (reambulált) lapja

9.12. ábra: Harmadik felmérés (reambulált) lapja

9.13. ábra - 1:10000 Gauss-Krüger topográfiai térkép

9.13. ábra: 1:10000 Gauss-Krüger topográfiai térkép

9.14. ábra - 1:50 000 táj térkép kivágata

9.14. ábra: 1:50 000 táj térkép kivágata
Az erdők szerepe az ökológiai
szemléletű tájtervezésben.
Esettanulmány a Szigetköz példáján
(Szabó M.)

9.14. ábra: 1:50 000 tájtérkép kivágata (a térképek az eredeti méretrányok kicsinyített másai)

Az egyes tájfoltok, élőhelyek, lehatárolására egyszerűsített kategóriákkba történt aszerint, hogy mind a négy térképen megtalálhatóak legyenek. A katonai térképeken még így is sokszor nehézségekben ütközött egyes területek pontos meghatározása. Összesen kilenc különböző élőhelytípus, mint tájfolt sikerült elkülöníteni:

- vízfolyás és tó, beleértve a Duna-ágakat is;
- egykori medrek, amelyek időszakosan vízzel borítottak, hínáros, nádas vegetációval, helyenként erdővel kísérve;
- nádas, mocsár, amelyek egyes helyeken sással, égerrel tarkított élőhelyek;
- erdő, ide az ártéri erdők (bokorfüzesek, fűz-nyár ligetek) tartoznak;
- nedves rét (nedves rétek, legelők, nedves kaszálók);
- szántó, parlag (száraz rétek);
- homok-, kavicszátony;
- település;
- kiskert (szőlős, gyümölcsös is beleértve)

A térképek alapján nyomon követhetők a Duna-medrek változásai (9.15. – 9.18. ábrák), a Lipóti-tó degradálódása, a települések növekedése és a területhasználati változások (9.19. – 9.21. ábrák). A Duna-meder változásának megfigyelésekor az első szembeülnő változás az I. és II. katonai térképen még szertegazgatóan folyó, szigeteket, zátonyokat építő Duna a III. katonai térképen már a szabályozás utáni főág és az ekkor kialakult mellékágrendszer különbsége. Jellemző a homokpadok, zátonyok eltűnése is a szabályozás után.

9.15. ábra - Folyóhálózat – I. felmérés
Az erdők szerepe az ökológiai szemléletű tájtervezésben. Esettanulmány a Szigetköz példáján (Szabó M.)

9.15. ábra: Folyóhálózat – I. felmérés

9.16. ábra - Folyóhálózat – II. felmérés
Az erdők szerepe az ökológiai szemléletű tájtervezésben. Esettanulmány a Szigetköz példaján (Szabó M.)

9.16. ábra: Folyóhálózat – II. felmérés

9.17. ábra - Folyóhálózat – III. felmérés
Az erdők szerepe az ökológiai
szemléletű tájtervezésben.
Esettanulmány a Szigetköz példáján
(Szabó M.)

9.17 ábra: Folyóhálózat – III. felmérés

9.18. ábra - Folyóhálózat – a topográfiai térkép alapján
Az erdők szerepe az ökológiai szemléletű tájtervezésben.
Esettanulmány a Szigetköz példáján (Szabó M.)

9.18. ábra: Folyóhálózat – a topográfiai térkép alapján

9.19. ábra - I. katonai felmérés – élőhelytérkép

9.20. ábra - II. katonai felmérés – élőhelytérkép
Az erdők szerepe az ökológiai szemléletű tájtervezésben. Esettanulmány a Szigetköz példáján (Szabó M.)

9.20. ábra: II. katonai felmérés – élőhelytérkép

9.21. ábra - III. katonai felmérés – élőhelytérkép

9.21. ábra: III. katonai felmérés – élőhelytérkép

9.22. ábra - Topográfiai térkép – élőhelytérkép
Az erdők szerepe az ökológiai szemléletű tájtervezésben. Esettanulmány a Szigetköz példáján (Szabó M.)

9.22. ábra: Topográfiai térkép – élőhelytérkép

Jól nyomon követhető a lipóti morotvatónak a visszaszorulása és a partjára épült Lipót községnek a területi növekedése, amelyet az olaj helyett talált hőforrásnak és a rajta kiépült fürdőnek köszönhet. A vizsgált területen Lipót mellett még két település is található, ezek Hédervár és Ásvány (mai nevén Ásványráró a szomszédos Ráró faluval történt egyesülés révén). Hédervárát hédérellovagok alapították, akik Szent István hívására érkeztek és telepedtek meg hazánkban. Az egykori földvár egyre nagyobb településsé nőtte ki magát, és mai napig folyamatosan fejlődik. Ásvány település határában aranyat találtak a zátonyokban, innen ered a neve, az arany pedig az Alpokból Dunába folyó patakokból került a Dunába. Ez a település is folyamatos területi növekedést mutat.

A négy térkép alapján elkészített élőhelyek/tájfoltok területi arányainak változását a 9.22. ábra foglalja össze. Az ábrából mindenek előtt a szántóföldek térhódítása a szembeszökő. A két első felmérés idején még változatlan (25-24 %), de a III. felmérés idején a vizsgált területnek már 37,9 %-a mezőgazdasági művelés alatt állt.

9.24. ábra - Az élőhelyek területi megoszlása
Az erdők szerepe az ökológiai szemléletű tájtervezésben.
Esettanulmány a Szigetköz példáján
(Szabó M.)

Az erdők szerepe az ökológiai szemléletű tájtervezésben.

Esettanulmány a Szigetköz példáján (Szabó M.)

9.24. ábra: Az élőhelyek területi megoszlása

Az ábrából mindenek előtt a szántóföldek térhódítása a szembeszökő. A két első felmérés idején még változatlan (25 – 24 %), de a III. felmérés idején a vizsgált területnek már 37,9 %-a mezőgazdasági művelés alatt állt.

Az I. felmérés idején a vizsgált terület 31,7 %-t erdő borította, de területük a II. felmérés idejére jelentősen 17,6%-ra csökkent. A III. felmérés térképlapja szerint 10%-al megnőtt a területük, ekkor 27,2 %. Nem szabad azonban figyelmen kívül hagyni azt, hogy az erdőterület növekedése a 20. század húszas–harmincas éveinek nagyarányú (elsősorban hullámtéri) nemesnyaras erdőtelepítéseinek köszönhető, az ősi erdők állományai (amelyek az I. felmérés idején jelentős kiterjedésben uvolták a tájat) pedig nagymértékben visszaszorultak.

Érdekes a nedves rétek területi alakulása: amilyen mértékben csökkent az erdőterület a II. felmérés idejére, szinte olyan mértékben nőtt a nedves rétek (legelők, kaszálók, mocsárrétek, láprétek) területe. Ez minden bizony az állattenyésztés fellendülésével kapcsolatos, minél több legelőt és kaszálóket kellett fenntartani, s ez elsősorban az erdők termőhelyén valósult meg. A III. felmérés idejére rendkívüli mértékben lecsökkentek a nedves rétek, párhuzamosan a szántók és az erdők növekedésével. Ez utóbbi esetben kézenfekvő, hogy a nemesnyár-telepítések potenciális erdő termőhelyekre történtek.

Az egykori kiskertek (szőlő- és gyümölcskertek) szinte eltűntek a települések körül, mára folyamatosan beépültek, illetve szántókká alakították őket. Az I. felmérés idején még 4 % fölölt voltak szőlők és gyümölcsösök, de területeik a továbbiakban tizedére csökkentek. A Szigetközben napjainkban is elhanyagolható a kert és szőlő művelési ág (Marosi S. – Somogyi, S.1990).

Az erdők szerepe a tájtervezésben

Tájaink – elsősorban a természettöközi erdős tájak – megőrzése, védelme és a tájtervezés során (ahol lehetséges) az ősi állapotú erdők visszatelepítése közös ügyünk, amelynek képviselete az utánunk következő generációk
szempontjából is fontos. Minden nemzedéknél nem csak jó minőségű és megfelelő mennyiségű faanyagot, mint materiális javakat adó erdőkre van szüksége, hanem olyanokra is, amelyeket az erdők, mint ökológiai rendszer szükségesek során az emberi társadalom számára biztosítanak, és amelyeket a társadalom tagjai élveznek. Ezek a működések, állapotok és eredmények az emberiség számára közvetlen vagy közvetetett úton hasznosok. Az erdő különleges pozíciót foglalnak el a természet által nyújtott szolgáltatások tekintetében. Szerepelik a szénkörzegfala termefrtásában nélkülözhetetlen és pótolhatatlan. Az emberiség több ponton, föleg az erdők irántán és a fosszilis tüzelőanyagok égetését keresztül befolyásolja a szénkiklust, és így a teljes földi bioszférában szertargózó hatássorozatot indít meg, amelynek következményeit nem ismerhetjük pontosan. A klímaváltozás már ma is komoly problémákat okoz, amelyek megoldása számtalan akadályba ütközik. Az erdők továbbá jelentős mennyiségű szennyezőanyagot távolítanak el a légkörből, illetve fontos védelmi funkciókat látanak el az erózióval illetve áradásos pusztításokkal szemben. Az emberi tevékenység közvetlenül és közvetve egyaránt hat az erdőkre, s azok állapota visszahat az emberi életminőségre. Az erdőterületeket csökkentésének mai útemet folytatva végső soron beszűkítjük lehetőségeinket, csökkentjük jó közérzetünk esélyeit, valamint kockáztatjuk civilizációs létét. Az emberi társadalmak gyakran alábecsülik az erdőterületek csökkentésének mai ütemét folytatva végső soron beszűkítjük lehetőségeinket, csökkentjük jó közérzetünk esélyeit, valamint kockáztatjuk civilizációs létét.

Felhasznált irodalom

Az erdők szerepe az ökológiai
szemléletű tájtervezésben.
Esettanulmány a Szigetköz példáján
(Szabó M.)

Természet – Erdő – Gazdálkodás Magyar Madártani és Természetvédelmi Egyesület, Pro Silva
equilibrium and environmental variability: What is natural vegetation in changing environment?
Fülöky Gy. (szerk.): A táj változásai a Kárpát-medencében a történelmi események hatására. Gödöllő,
pp.164-169. Szabó M. (2011): River regulations and Hydroelectric Power Plants as geohazard -
effects of hydrogeographical Changes on Floodplain Landscape (a Hungarian case Study). In: Jiu-
Chuan Lin (szerk.). Landscape Conservation, National Taiwan University. pp:105-112. Wilcove D.S.