Ugrás a tartalomhoz

3D megjelenítési technikák

Dr. Fekete Róbert Tamás, Dr. Tamás Péter, Dr. Antal Ákos, Décsei-Paróczi Annamária (2014)

BME-MOGI

Az LCD / TFT kijelzők

Az LCD / TFT kijelzők

A folyadékkristály olyan anyag, amely a folyékony és szilárd halmazállapot között helyezkedik el, a molekulái között bizonyos fokú rendezettség figyelhető meg. Anizotrop tulajdonságú, vagyis a különböző irányultságú behatásokra (fény, elektromos és mágneses mező, mechanikai behatás stb.) másképpen viselkedik. 1888-ban Reinitzer osztrák botanikus felfedezte fel a folyadékkristályokat. 1963-ban Williams (RCA) kiderítette, hogy a fény másképpen haladt át a folyadékkristályon, amikor elektromos tér hatásának tette ki. 1968-ban Heilmeyer elkészült egy LCD prototípussal, azonban ekkor még nem voltak elég stabilak a folyadékkristályok a sorozatgyártáshoz. A University of Hull kutatói felfedeztek egy stabil folyadékkristályos anyagot (bifenil). 1973-ban a Sharp cég piacra dobta az első LCD kijelzős számológépét.

A folyadékkristályos kijelzők őse a kvarcórákban fordult elő először. Folyadékkristállyal már 1911 óta kísérleteznek, működő LCD monitor azonban az 1960-as években készült először. Az LCD monitorok minősége egyre javul, áruk csökken, de egy jó CRT monitor még mindig teltebb színeket ad.

5.15. ábra - LCD kijelző működése


A folyadékkristályos megjelenítők alapgondolata, hogy a háttérvilágítást, amely a szemünkbe jut, egy olyan folyadékkristály-réteggel korlátozzuk, amelyet szabadon tudunk ki-be kapcsolni, ezzel eltakarva vagy átengedve a fényt. Ha a folyadékkristály-réteget elektromosan gerjesztjük, a közeg polarizációs síkja elfordul, és így a már polarizált háttérvilágítást vagy átengedi a közeg túloldalán lévő, 90 fokkal (az STN, super-twisted nematic kijelzőknél ez az érték 270 fok is lehet) elforgatott újabb polarizációs szűrő, vagy sem (illetve részben átengedi). Ha egy finoman rovátkolt felülettel (iránybeállító réteg) kerülnek érintkezésbe a folyadékkristály molekulák, párhuzamosan állnak be.

Ha a folyadékkristályt két ilyen réteg közé fogjuk (amelyek egymásra merőleges orientációjúak), akkor az egyik és másik irányokba állnak be, a rétegek irányultságának megfelelően. Ha fény halad át ezen a szendvicsszerkezeten, akkor annak a polarizációs iránya is elfordul a molekulák irányultságának megfelelően. Ha a folyadékkristályra feszültséget kapcsolunk, akkor a molekulák átrendeződnek az elektromos tér irányába, így a fény változatlanul haladhat át. Tehát, ha az LCD monitorban két, belső felületén mikronméretű árkokkal ellátott átlátszó lap közé folyadékkristályos anyagot helyezünk, amely nyugalmi állapotában igazodik a belső felület által meghatározott irányhoz, a folyadékkristály csavart állapotot vesz fel. Ezt követően a kijelző első és hátsó oldalára egy-egy polarizációs szűrőt helyezünk (amelyek a fény minden irányú rezgését csak egy meghatározott síkban engedik tovább). A csavart elhelyezkedésű folyadékkristály különleges tulajdonsága, hogy a ráeső fény rezgési síkját elforgatja. Ha hátul megvilágítjuk a panelt, akkor a hátsó polarizátoron átjutó fényt a folyadékkristály elforgatja, így a fény áthalad az első szűrőn, és világos képpontot kapunk. Ha kristályokra feszültséget kapcsolunk, nem forgatják el a fényt, az eredmény pedig fekete képpont. A polarizációs szűrő elé már csak egy színszűrőt kell helyezni. Több ezer féle folyadékkristály-molekula létezik. Három fő típusuk a nematikus (szálszerű), a koleszterikus (fokozatosan fordító nematikus) és a szmektikus (szappanszerű).

Az úgynevezett passzív mátrix vezérlőnél az egyik elektróda az alsó hordozón, a másik elektróda pedig a felső hordozón helyezkedik el. Az elektromos jeleket egy időben alkalmazzák az egyik és másik vezetékekre a megfelelő időzítéssel, így kapcsolják be az egyes pixeleket.

Az úgynevezett aktív mátrix vezérlőnél egy-egy tranzisztort vagy diódát helyeznek el minden pixelre, amelyek ki-be kapcsolják azokat. Mindkét elektróda ugyanazon a hordozón helyezkedik el, mint a tranzisztormátrix vagy a diódamátrix. A vezérlőjeleket az egyik, míg a videojeleket a másik elektródákra kötik rá.

A TFT (Thin Film Transistor - vékonyfilm tranzisztor) az LCD technológián alapul. Minden egyes képpontja egy saját tranzisztorból áll, amely aktív állapotban elő tud állítani egy világító pontot. Az ilyen kijelzőket gyakran aktív-mátrixos LCD-nek is szokás nevezni. A három elektródából felépülő tranzisztor kapcsolófunkciót lát el. A vezérlőjel hatására a videojel a folyadékkristály-cellára kerül. A megoldás előnye, hogy rendkívül gyors működésű.