Ugrás a tartalomhoz

3D megjelenítési technikák

Dr. Fekete Róbert Tamás, Dr. Tamás Péter, Dr. Antal Ákos, Décsei-Paróczi Annamária (2014)

BME-MOGI

Koordináta-rendszerek

Koordináta-rendszerek

A objektumok térbeli elhelyezkedésének megadásakor vonatkoztatási rendszerre, koordináta-rendszerre van szükségünk.

Leggyakrabbak használt koordinátarendszerek

Matematikai tanulmányainkból ismertek a Descartes féle derékszögű koordináta-rendszer, a henger és gömbi koordináta-rendszerek egyaránt.

Homogén koordináták

Az olyan koordináta-rendszereket nevezzük homogénnek, amelyekben a pontot azonosító, rendezett pár (hármas, négyes stb.) elemeit egy nullától különböző számmal megszorozva, ugyanazt, a pontot azonosító párt (hármast, négyest…) kapjuk [3.1.].

 

 

Ha egy síkbeli pontot szeretnénk leírni, akkor azt megtehetjük úgy, hogy a síkot kiemeljük a térbe. A z=1 lesz a sík egyenlete, és a tér pontját az [x,y,1] homogén koordinátákkal megadott ponttal jellemezzük. Világos, hogy az azonos irányú [λ*x, λ*y, λ] ugyanaz a pontot jelöli ki a síkból (3.3. ábra - Homogén koordináták)

3.3. ábra - Homogén koordináták

Homogén koordináták


Hasonlóan járhatunk el térbeli koordináták esetén a negyedik koordináta (w=1) értéket választva a tér pontjait az [x,y,z,1] homogén koordinátás forma írja le.

A homogén koordináták igazi jelentőségét az adja, hogy használatukkal az ideális térelemek (pont, egyenes, sík) is megadhatók. Például, a 3.1. ábra - Vektoros A esetén az [1,0,0] homogén koordinátákkal megadott pont az x irányú ideális pontját adja a síknak