Ugrás a tartalomhoz

Komputergrafika -- Matematikai alapok

Dr. Kovács Emőd

Kempelen Farkas Hallgatói Információs Központ

1. fejezet - Vektorok (Vectors)

1. fejezet - Vektorok (Vectors)

[105] A vektorokat a legkülönbözőbb összefüggésekben használjuk a komputergrafikában. Használatosak például az árnyalásnál, ahol szükségünk van felület normálisa és a fénysugár iránya által bezárt szögre. A számítógépes játékokban ábrázolhatjuk egy tárgy mozgásának irányát és sebességét is vektorral.

A vektor két jellemző adattal rendelkezik: nagysággal és iránnyal (beleértve az irányítást is). A vektort az iránya különbözteti meg a skaláris mennyiségektől, amelyeknek csak nagyságuk van. Háromdimenziós vektort egy számhármassal írunk le , melynek minden komponense skalár.

1.1. ábra. Vektor - irányított szakasz

A vektor, mint irányított szakasz, abban különbözik a szakaszoktól, hogy valójában két pont kapcsolatát írja le. A vektorok elemi geometriai használata mellett (például: eltolás jellemzése) felmerül az ötlet, hogy vektorokat feleltessünk meg pontoknak. Minden pontot egy ponthoz viszonyítsunk, az irányított szakaszok kezdőpontját közösnek választva. Ennek segítségével a már megismert koordináta-rendszerbeli problémákat egy új szemszögből vizsgálhatjuk meg. Az irányított szakaszokat a végpontjuk koordinátáival jellemezzük.

Bázisvektorok olyan speciális vektorok, melyek lineáris kombinációjával felírhatjuk a tér (sík) bármely vektorát. A bázisvektorok vagy ortogonálisak, ekkor páronként merőlegesek egymásra, normáltak, azaz a vektorok egységnyi hosszúak, vagy teljesítik mindkét előző tulajdonságot, akkor ortonormáltak.

Helyvektorok a térben

[93] Megtehetjük, hogy pontokat egy adott pontból kiinduló vektorokkal határozunk meg. Ehhez egy vonatkozási pontot kell rögzíteni, általában ez megegyezik a koordináta-rendszer origójával. Az origóból induló vektorokat helyvektoroknak nevezzük. A helyvektorok és a sík (tér) pontjai között egyértelmű megfeleltetés van. Valamint a sík (tér) bármely vektorának meg tudunk feleltetni egy vele egyenlő helyvektort. Egy helyvektort végpontjával, illetve végpontjának koordinátáival adhatunk meg. Így a helyvektorok kölcsönösen megfeleltethetők a sík pontjainak.

A vektorokat három adat jellemzi: az irány, az irányítás és a hossz (abszolútérték):

  • Minden pontot egyértelműen megadhatunk egy helyvektorral, amelynek jelölése: . Az i, j, k alapvektorok (bázisvektorok) rendre a koordinátarendszer x-, y-, z- tengelyei irányába mutató egységvektorok.

  • A vektor irányát a vektor irányszögével, vagy annak valamely szögfüggvényével adhatjuk meg. Irányszögeknek a vektor és az egyes tengelyek által bezárt szögeket nevezzük. Ezek koszinuszai az iránykoszinuszok: , , , ahol teljesül az egyenlőség. Az illetve iránykoszinuszokhoz tartozó vektorok egymással bezárt szögére érvényes a összefüggés. Ha , akkor a két irány merőleges egymásra.

    1.2. ábra. A vektor irányszöge

  • Bármely vektor hosszát, abszolútértékét megkapjuk,ha a koordinátáinak négyzetösszegéből négyzetgyököt vonunk: