Ugrás a tartalomhoz

Matematikai versenyfeladatok

Makó Zita, Szilágyi Ibolya, Téglási Ilona

Kempelen Farkas Hallgatói Információs Központ

9. fejezet - Logikai feladatok és halmazok

9. fejezet - Logikai feladatok és halmazok

Feladatok

  1. 1990 papírlapra ráírtunk egy-egy számot. Mutassuk meg, hogy kiválasztható 45 lap úgy, hogy vagy mindegyikre azonos, vagy mindegyikre különböző szám van írva!

  2. Felbontható-e az halmaz egy két elemű és egy 13 elemű halmazra úgy, hogy elemeinek szorzata egyenlő legyen elemeinek összegével?

  3. Egy matematikaversenyen három feladatot tűztek ki. 56 versenyző oldott meg legalább egy feladatot. 2 versenyző volt, aki mindhárom feladatot megoldotta. A harmadik feladatot megoldók közül 10-zel többen oldották meg a másodikat, mint az elsőt. Az elsőt és a másodikat is megoldó versenyzők 10-zel többen voltak, mint akik csak a harmadikat oldották meg. Aki megoldotta az elsőt és a harmadikat is, az a másodikat is megoldotta. Akik csak az első vagy csak a második feladatot oldották meg, összesen 14-en voltak. Hány versenyző oldotta meg a harmadik feladatot?

  4. Egy hételemű halmaz háromelemű részhalmazait kell kiszíneznünk úgy, hogy ha két részhalmaz metszete üres, akkor színük különböző. Legalább hány színre van ehhez szükségünk?

  5. Egy kerek asztalnál hazugok és igazmondók ülnek, összesen 30-an. Tudjuk, hogy minden hazudós két szomszédja közül pontosan az egyik hazudós. A 30 ember közül 12-en azt mondják, hogy nekik pontosan egy hazudós szomszédjuk van, a többiek pedig azt, hogy mindkét szomszédjuk hazudós. Hány hazudós ül az asztalnál?

  6. Adott az számoknak n darab különböző részhalmaza. Bizonyítsuk be, hogy van olyan szám, amelyet minden halmazból elhagyva, a megmaradó halmazok továbbra is különbözőek.

  7. Négy lány és négy fiú elmentek együtt egy bálba. A keringőnél mind a négy fiú felkérte a négy lány valamelyikét táncolni (egy lányt csak egy fiú), majd a tangónál hölgyválasz volt, azaz a négy lány mindegyike kérte fel a négy fiú valamelyikét (egy fiút csak egy lány). A két tánc során nem táncolt együtt kétszer ugyanaz a pár. A következőket tudjuk a felkérésekről:

    1. Csabi azzal a lánnyal keringőzött, aki Danival tangózott.

    2. Andris azt a lányt kérte fel keringőzni, aki azzal a fiúval tangózott, akivel Enikő keringőzött.

    3. Berci azzal a lánnyal keringőzött, aki Mari keringőpartnerével tangózott.

    4. Gizi nem tangózott Bercivel.

    5. Hédi egy olyan fiúval tangózott, aki nem keringőzött Gizivel.

    A két tánc után a táncmester kérésére mindenki annak a háta mögé állt, akit felkért (annak a hátát nézte). Így a négy fiú és a négy lány éppen egy nagy körbe rendeződött el.

    Ki kivel keringőzött, illetve tangózott?

  8. Egy gyakorló órán a matematikatanár ötféle feladatot tűzött ki, minden fajtából három darabot. Egy feladat jó megoldásáért 1 pontot kapnak a tanulók, ha nem oldottak meg ebből a fajtából többet. Ha két jó megoldásuk van egy fajtából, akkor ezekre feladatonként 4 pontot, ha mindhárom megvan egy fajtából, akkor ezekre feladatonként 9 pontot kapnak. A feladatmegoldásban a tanulók csapatokban vettek részt. A végén minden csapatnak a többiekétől különböző pontszáma alakult ki, de minden csapat pontszáma 3-mal osztható lett. Legfeljebb hány csapat vehetett részt a feladatmegoldásban?

  9. Van egy város, ahol mindenki igazmondó vagy hazudós, és őrült vagy normális. Az igazmondók azt mondják, amit gondolnak, a hazudósok az ellenkezőjét mondják annak, amit gondolnak. A normálisak az igazat gondolják, az őrültek az igazság ellenkezőjét gondolják. Négyen, akik ebben a városban laknak, a következőket mondták:

    • Andi: Őrült vagyok.

    • Bandi: Igazmondó vagyok.

    • Szandi: Hazudós vagyok.

    • Dendi: Normális vagyok.

    • Andi: Szandi igazmondó.

    • Bandi: Dendi őrült.

    • Szandi: Bandi hazudós.

    • Dendi: Szandi normális.

    Állapítsuk meg a négy személyről, hogy melyikük hazudós, illetve melyikük igazmondó, valamint melyikük normális, illetve melyikük őrült.

  10. Négy fiú és négy lány táncolni mentek egy bálba. Az első négy tánc során a négy fiú mindegyike pontosan egyszer táncolt a négy lány mindegyikével, egy-egy táncot teljesen végigtáncolva egymással. Csaba Fannival, Barnabás Helénnel táncolta a bécsi keringőt. Aladár tangópartnere Gabriella, Dávidé Fanni volt. Gabriella Csabával, Enikő Dáviddal mambózott. Ki kivel táncolta az első táncot, az angol keringőt?

  11. A 8. évfolyam négy osztálya vett részt az iskolai matematika versenyen. A versenyen minden csapat különböző pontszámot ért el. Az eredményhirdetés előtt az egyik matematikatanár összeadta minden lehetséges módon 2-2 csapat eredményét, és megmondta, hogy a kapott összegek közül a legnagyobb 128, a legkisebb 82. Továbbá azt is megsúgta, hogy a 2. és 3. helyezett csapat között csak 4 pont volt a különbség. Mennyivel gyűjtött több pontot az első helyezett, mint a negyedik helyezett?

  12. Az halmaz elemszáma több, mint a halmaz elemszáma, de kevesebb, mint elemszámának kétszerese. Tudjuk továbbá, hogy a halmaznak 16-tal több részhalmaza van, mint a halmaznak. Hány részhalmaza lehet az halmaznak?

  13. Egy 500 embert érintő felmérés során kiderült, hogy a megkérdezettek 46%-a szereti az eper, 71%-a a vanília, 85%-a csokoládé fagylaltot. Van-e a megkérdezettek között hat olyan ember, aki mind a háromféle fagylaltot szereti?

  14. Egy iskola kilencedik évfolyamán négy osztály van. A négy osztály négynapos erdei iskola programon vett részt. Minden osztály egy nap túrázni ment, a többiek ekkor különböző foglalkozásokon, előadásokon vettek részt. Hétfőn az A osztály túrázott, ekkor 81-en, kedden a B osztály, ekkor 79-en, szerdán a C-sek, ekkor 75-en, csütörtökön pedig a D-sek, ekkor 80-an maradtak a táborban. Hány fős osztályok vannak az évfolyamon?